Tomohiko Ohwada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/186482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nature Methods, 2012, 9, 1021-1029.	19.0	297
2	Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nature Communications, 2018, 9, 2049.	12.8	127
3	An Evaluation of Amide Group Planarity in 7-Azabicyclo[2.2.1]heptane Amides. Low Amide Bond Rotation Barrier in Solution. Journal of the American Chemical Society, 2003, 125, 15191-15199.	13.7	103
4	Prototype Pictetâ^'Spengler Reactions Catalyzed by Superacids. Involvement of Dicationic Superelectrophiles. Journal of Organic Chemistry, 1999, 64, 611-617.	3.2	102
5	Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6. Nature, 2017, 548, 356-360.	27.8	101
6	Usefulness and Limitation of DiBAC4(3), a Voltage-Sensitive Fluorescent Dye, for the Measurement of Membrane Potentials Regulated by Recombinant Large Conductance Ca2+-Activated K+ Channels in HEK293 Cells. The Japanese Journal of Pharmacology, 2001, 86, 342-350.	1.2	94
7	Structural Features of AliphaticN-Nitrosamines of 7-Azabicyclo[2.2.1]heptanes That Facilitate Nâ^'NO Bond Cleavage. Journal of the American Chemical Society, 2001, 123, 10164-10172.	13.7	88
8	Molecular Basis of Pimarane Compounds as Novel Activators of Large-Conductance Ca2+-Activated K+Channel α-Subunit. Molecular Pharmacology, 2002, 62, 836-846.	2.3	82
9	Superacid-Catalyzed Electrocyclization of 1-Phenyl-2-propen-1-ones to 1-Indanones. Kinetic and Theoretical Studies of Electrocyclization of Oxoniumâ^'Carbenium Dications. Journal of the American Chemical Society, 1997, 119, 6774-6780.	13.7	78
10	Friedel-Crafts-type reaction of benzaldehyde with benzene. Diprotonated benzaldehyde as the reactive intermediate Journal of the American Chemical Society, 1995, 117, 11081-11084.	13.7	75
11	Molecular mechanism of pharmacological activation of BK channels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3552-3557.	7.1	74
12	Orbital-Controlled Stereoselections in Sterically Unbiased Cyclic Systems. Chemical Reviews, 1999, 99, 1337-1376.	47.7	71
13	GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. Journal of Biochemistry, 2012, 151, 511-518.	1.7	69
14	Friedel-Crafts-Type Cyclodehydration of 1,3-Diphenyl-1-propanones. Kinetic Evidence for the Involvement of Dication. Journal of the American Chemical Society, 1994, 116, 2312-2317.	13.7	68
15	Synthesis and Evaluation of Lysophosphatidylserine Analogues as Inducers of Mast Cell Degranulation. Potent Activities of Lysophosphatidylthreonine and Its 2-Deoxy Derivative. Journal of Medicinal Chemistry, 2009, 52, 5837-5863.	6.4	67
16	Three-Center, Two-Electron Systems. Origin of the Tilting of Their Substituents. Journal of the American Chemical Society, 1996, 118, 7247-7254.	13.7	65
17	Requirements for Houben-Hoesch and Gattermann reactions. Involvement of diprotonated cyanides in the reactions with benzene. Journal of the American Chemical Society, 1991, 113, 691-692.	13.7	61
18	Theoretical Analysis of Lewis Basicity Based on Local Electron-Donating Ability. Origin of Basic Strength of Cyclic Amines. Journal of Organic Chemistry, 2004, 69, 7486-7494.	3.2	61

ΤΟΜΟΗΙΚΟ ΟΗWADA

#	Article	IF	CITATIONS
19	Gene transfection activities of amphiphilic steroid–polyamine conjugates. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1468, 396-402.	2.6	56
20	4H-1,2-Benzoxazines as novel precursors of o-benzoquinone methide. Journal of the American Chemical Society, 1990, 112, 5341-5342.	13.7	50
21	Cyclization of Arylacetoacetates to Indene and Dihydronaphthalene Derivatives in Strong Acids. Evidence for Involvement of Further Protonation of O,O-Diprotonated β-Ketoester, Leading to Enhancement of Cyclization. Journal of the American Chemical Society, 2010, 132, 807-815.	13.7	50
22	Reaction of diphenylmethyl cations in a strong acid. Participation of carbodications with positive charge substantially delocalized over the aromatic rings. Journal of the American Chemical Society, 1988, 110, 1862-1870.	13.7	48
23	The Hammett Acidity Function H0 of Trifluoromethanesulfonic Acid-Trifluoroacetic Acid and Related Acid Systems. A Versatile Nonaqueous Acid System Chemical and Pharmaceutical Bulletin, 1991, 39, 2718-2720.	1.3	46
24	Orbital distortion arising from remote substituents. Nitration, reduction, and epoxidation of fluorenes bearing a carbonyl or an olefin group in spiro geometry. Journal of the American Chemical Society, 1992, 114, 8818-8827.	13.7	46
25	On the planarity of amide nitrogen. Intrinsic pyramidal nitrogen of N-acyl-7-azabicyclo[2.2.1]heptanes. Tetrahedron Letters, 1998, 39, 865-868.	1.4	46
26	Theoretical Study of Reactivities in Electrophilic Aromatic Substitution Reactions:  Reactive Hybrid Orbital Analysis. Journal of Physical Chemistry A, 2003, 107, 2875-2881.	2.5	44
27	Ceneration and Application ofo-Quinone Methides Bearing Various Substituents on the Benzene Ring. Advanced Synthesis and Catalysis, 2007, 349, 669-679.	4.3	43
28	Water-Stable Helical Structure of Tertiary Amides of Bicyclic β-Amino Acid Bearing 7-Azabicyclo[2.2.1]heptane. Full Control of Amide Cisâ^Trans Equilibrium by Bridgehead Substitution. Journal of the American Chemical Society, 2010, 132, 14780-14789.	13.7	43
29	Superacid-Catalyzed Intramolecular Cyclization Reaction of Arylcyanopropionate: <i>Geminal</i> Substitution Effect on Superelectrophilicity. Journal of Organic Chemistry, 2008, 73, 4219-4224.	3.2	42
30	Visibleâ€Lightâ€Triggered Release of Nitric Oxide from Nâ€Pyramidal Nitrosamines. Chemistry - A European Journal, 2012, 18, 1127-1141.	3.3	41
31	Structure–Activity Relationships of Lysophosphatidylserine Analogs as Agonists of G-Protein-Coupled Receptors GPR34, P2Y10, and GPR174. Journal of Medicinal Chemistry, 2015, 58, 4204-4219.	6.4	41
32	Dehydroabietic acid derivatives as a novel scaffold for large-Conductance calcium-Activated K+ channel openers. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3971-3974.	2.2	40
33	Design, synthesis, and BK channel-opening activity of hexahydrodibenzazepinone derivatives. Bioorganic and Medicinal Chemistry, 2006, 14, 8014-8031.	3.0	39
34	Retro-Dielsâ^'Alder Reaction of 4H-1,2-Benzoxazines to Generate o-Quinone Methides:  Involvement of Highly Polarized Transition States. Journal of Organic Chemistry, 2007, 72, 10088-10095.	3.2	38
35	Reactions of O,O-diprotonated nitro olefins with benzenes. Formations of phenylacetones, 4H-1,2-benzoxazines and biarylacetone oximes. Tetrahedron, 1990, 46, 7539-7555.	1.9	36
36	Lysophosphatidylserine suppresses IL-2 production in CD4 T cells through LPS3/GPR174. Biochemical and Biophysical Research Communications, 2017, 494, 332-338.	2.1	36

#	Article	IF	CITATIONS
37	4H-1,2-Benzoxazines with Electron-Withdrawing Substituents on the Benzene Ring:Â Synthesis and Application as Potent Intermediates for Oxygen-Functionalized Aromatic Compounds. Journal of the American Chemical Society, 2003, 125, 5282-5283.	13.7	35
38	Nonplanar Structures of Thioamides Derived from 7-Azabicyclo[2.2.1]heptane. Electronically Tunable Planarity of Thioamides. Journal of Organic Chemistry, 2008, 73, 9102-9108.	3.2	35
39	Transnitrosation of Thiols from AliphaticN-Nitrosamines:ÂS-Nitrosation and Indirect Generation of Nitric Oxide. Journal of the American Chemical Society, 2007, 129, 736-737.	13.7	34
40	Lysophosphatidylserine analogues differentially activate three LysoPS receptors. Journal of Biochemistry, 2015, 157, 151-160.	1.7	34
41	Structural Insight and Development of EGFR Tyrosine Kinase Inhibitors. Molecules, 2022, 27, 819.	3.8	32
42	Theoretical Revisit of Regioselectivities of Dielsâ``Alder Reactions:Â Orbital-Based Reevaluation of Multicentered Reactivity in Terms of Reactive Hybrid Orbitals. Journal of Physical Chemistry A, 2005, 109, 816-824.	2.5	31
43	Oligomers of β-amino acid bearing non-planar amides form ordered structures. Tetrahedron, 2006, 62, 11635-11644.	1.9	31
44	Fluorogenic Ion Sensing System Working in Water, Based on Stimulus-Responsive Copolymers Incorporating a Polarity-Sensitive Fluorophore. Macromolecules, 2007, 40, 9651-9657.	4.8	30
45	Activation of Electrophilicity of Stable Y-Delocalized Carbamate Cations in Intramolecular Aromatic Substitution Reaction: Evidence for Formation of Diprotonated Carbamates Leading to Generation of Isocyanates. Journal of Organic Chemistry, 2012, 77, 9313-9328.	3.2	30
46	Design, synthesis, and characterization of BK channel openers based on oximation of abietane diterpene derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 8642-8659.	3.0	29
47	Molecular Mechanisms for Large Conductance Ca2+-Activated K+ Channel Activation by a Novel Opener, 12,14-Dichlorodehydroabietic Acid. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 144-153.	2.5	28
48	Robust <i>trans</i> -Amide Helical Structure of Oligomers of Bicyclic Mimics of β-Proline: Impact of Positional Switching of Bridgehead Substituent on Amide <i>cis</i> – <i>trans</i> Equilibrium. Journal of Organic Chemistry, 2014, 79, 5287-5300.	3.2	28
49	Superacid-Catalyzed Electrocyclization of Diphenylmethyl Cations to Fluorenes. Kinetic and Theoretical Revisit Supporting the Involvement of Ethylene Dications. Journal of the American Chemical Society, 1998, 120, 4629-4637.	13.7	27
50	Formation of 4H-1,2-Benzoxazines by Intramolecular Cyclization of Nitroalkanes. Scope of Aromatic Oxygen-Functionalization Reaction Involving a Nitro Oxygen Atom and Mechanistic Insights. Journal of the American Chemical Society, 2007, 129, 1724-1732.	13.7	27
51	Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie - International Edition, 2020, 59, 3988-3993.	13.8	27
52	Reaction of β-nitrostyrenes with benzene catalyzed by trifluoromethanesulfonic acid. Formation and reaction of n,n-dihydroxyiminium-benzyl dications. Tetrahedron, 1987, 43, 297-305.	1.9	26
53	Base-Induced Transformation of 2-Acyl-3-alkyl-2 <i>H</i> -azirines to Oxazoles: Involvement of Deprotonation-Initiated Pathways. Journal of Organic Chemistry, 2017, 82, 6313-6326.	3.2	26
54	Distortion of Olefin and Carbonyl .piOrbitals in Dibenzobicyclo[2.2.2]octatrienes and Dibenzobicyclo[2.2.2]octadienones. Unsymmetrization of .pi. Lobes Arising from .pipi. Orbital Interactions. Journal of Organic Chemistry, 1994, 59, 3975-3984.	3.2	25

ΤΟΜΟΗΙΚΟ ΟΗWADA

#	Article	IF	CITATIONS
55	Transnitrosylation Directs TRPA1 Selectivity in <i>N</i> -Nitrosamine Activators. Molecular Pharmacology, 2014, 85, 175-185.	2.3	25
56	Protonation Switching to the Leastâ€Basic Heteroatom of Carbamate through Cationic Hydrogen Bonding Promotes the Formation of Isocyanate Cations. Chemistry - A European Journal, 2014, 20, 8682-8690.	3.3	25
57	Nitric oxide-induced oxidative stress impairs pacemaker function of murine interstitial cells of Cajal during inflammation. Pharmacological Research, 2016, 111, 838-848.	7.1	25
58	Attenuated Desensitization of β-Adrenergic Receptor by Water-Soluble N-Nitrosamines That Induce S-Nitrosylation Without NO Release. Circulation Research, 2013, 112, 327-334.	4.5	24
59	Synthesis of Medium-Ring-Sized Benzolactams by Using Strong Electrophiles and Quantitative Evaluation of Ring-Size Dependency of the Cyclization Reaction Rate. Journal of Organic Chemistry, 2020, 85, 876-901.	3.2	24
60	Novel BK channel openers containing dehydroabietic acid skeleton: Structure–activity relationship for peripheral substituents on ring C. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5201-5205.	2.2	23
61	Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model. Scientific Reports, 2018, 8, 1578.	3.3	22
62	Orbital Unsymmetrization Affects Facial Selectivities of Dielsâ^'Alder Dienophiles. Journal of Organic Chemistry, 1996, 61, 3155-3166.	3.2	19
63	Stereochemical evidence for stabilization of a nitrogen cation by neighboring chlorine or bromine. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4206-4211.	7.1	19
64	Conformational Constraint of the Glycerol Moiety of Lysophosphatidylserine Affords Compounds with Receptor Subtype Selectivity. Journal of Medicinal Chemistry, 2016, 59, 3750-3776.	6.4	18
65	α,α-Disubstituted Glycines Bearing a Large Hydrocarbon Ring: Peptide Self-Assembly through Hydrophobic Recognition. Chemistry - A European Journal, 2004, 10, 617-626.	3.3	17
66	Phospholipid localization implies microglial morphology and function via Cdc42 <i>in vitro</i> . Glia, 2017, 65, 740-755.	4.9	17
67	Probing the Hydrophobic Binding Pocket of G-Protein-Coupled Lysophosphatidylserine Receptor GPR34/LPS ₁ by Docking-Aided Structure–Activity Analysis. Journal of Medicinal Chemistry, 2017, 60, 6384-6399.	6.4	17
68	Acidâ€Promoted Chemoselective Introduction of Amide Functionality onto Aromatic Compounds Mediated by an Isocyanate Cation Generated from Carbamate. Chemistry - an Asian Journal, 2014, 9, 2995-3004.	3.3	16
69	7-Azabicyclo[2.2.1]heptane as a structural motif to block mutagenicity of nitrosamines. Bioorganic and Medicinal Chemistry, 2011, 19, 2726-2741.	3.0	15
70	The synthesis and BK channel-opening activity of N- acylaminoalkyloxime derivatives of dehydroabietic acid. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 283-287.	2.2	15
71	Orbital Unsymmetrization of Olefins Arising from Non-equivalent Orbital InteractionsSIGMAPI. Coupling in Bicyclo(2.2.2)octenes Chemical and Pharmaceutical Bulletin, 1996, 44, 296-306.	1.3	14
72	Novel oxime and oxime ether derivatives of 12,14-dichlorodehydroabietic acid: Design, synthesis, and BK channel-opening activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6386-6389.	2.2	14

ΤΟΜΟΗΙΚΟ ΟΗWADA

#	Article	IF	CITATIONS
73	Enantiodivergent Deprotonation/Acylation of αâ€Amino Nitriles. Angewandte Chemie - International Edition, 2013, 52, 12956-12960.	13.8	14
74	Hydrogen bonding to carbonyl oxygen of nitrogen-pyramidalized amide – detection of pyramidalization direction preference by vibrational circular dichroism spectroscopy. Chemical Communications, 2016, 52, 4018-4021.	4.1	14
75	Application of C-Terminal 7-Azabicyclo[2.2.1]heptane to Stabilize β-Strand-like Extended Conformation of a Neighboring α-Amino Acid. Journal of Organic Chemistry, 2018, 83, 13063-13079.	3.2	14
76	Design, synthesis and characterization of podocarpate derivatives as openers of BK channels. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5197-5200.	2.2	13
77	Theoretical study on the excited states of heteroarene chromophores: Comparison of calculated and experimental values. Chemical Physics Letters, 2009, 473, 196-200.	2.6	13
78	Contrasting C- and O-Atom Reactivities of Neutral Ketone and Enolate Forms of 3-Sulfonyloxyimino-2-methyl-1-phenyl-1-butanones. Journal of Organic Chemistry, 2018, 83, 203-219.	3.2	13
79	Facial selectivities of benzofluorenes bearing a carbonyl, an olefin, or a diene group in spiro geometry. ï€ Spiro substituent effects. Tetrahedron Letters, 1998, 39, 403-406.	1.4	12
80	Dihedral angle-dependent orbital distortions arising from vicinal bonds in norbornene and 2-norbornanone. Tetrahedron, 1993, 49, 7649-7656.	1.9	11
81	Anchoring and bola cationic amphiphiles for nucleotide delivery. effects of orientation and extension of hydrophobic regions. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2897-2901.	2.2	11
82	Revisiting secondary interactions in neighboring group participation, exemplified by reactivity changes of iminylium intermediates. Organic and Biomolecular Chemistry, 2017, 15, 1381-1392.	2.8	11
83	Synthesis of Heterocycle-Containing 9,9-Diarylfluorenes Using Superelectrophiles. Journal of Organic Chemistry, 2017, 82, 6044-6053.	3.2	11
84	Amide nitrogen pyramidalization changes lactam amide spinning. Nature Communications, 2019, 10, 461.	12.8	11
85	Non-naturally Occurring Regio Isomer of Lysophosphatidylserine Exhibits Potent Agonistic Activity toward G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2020, 63, 9990-10029.	6.4	11
86	A Cyclopropyl Group Shows Reverse Facial Selectivity Depending on the Bicyclic Ring System. Tetrahedron Letters, 1997, 38, 6693-6696.	1.4	10
87	Elucidation of the <i>E-</i> Amide Preference of <i>N</i> Acyl Azoles. Journal of Organic Chemistry, 2017, 82, 11370-11382.	3.2	10
88	Uncovering the Networks of Topological Neighborhoods in β-Strand and Amyloid β-Sheet Structures. Scientific Reports, 2019, 9, 10737.	3.3	10
89	Orbital distortion arising from remote substituents nitration and reduction of spiro(cyclopenta-1,9'-fluorene)-2-ones Chemical and Pharmaceutical Bulletin, 1991, 39, 2176-2178.	1.3	9
90	Secondary structure of homo-thiopeptides based on a bridged β-proline analogue: preferred formation of extended strand structures with trans-thioamide bonds. Tetrahedron, 2012, 68, 4418-4428.	1.9	9

#	Article	IF	CITATIONS
91	Tandem buildup of complexity of aromatic molecules through multiple successive electrophile generation in one pot, controlled by varying the reaction temperature. Organic and Biomolecular Chemistry, 2016, 14, 1680-1693.	2.8	9
92	Use of Chargeâ€Charge Repulsion to Enhance Ï€â€Electron Delocalization into Antiâ€Aromatic and Aromatic Systems. Chemistry - A European Journal, 2017, 23, 2566-2570.	3.3	9
93	Molecular Dynamics Study of Nitrogen-Pyramidalized Bicyclic β-Proline Oligomers: Length-Dependent Convergence to Organized Structures. Journal of Physical Chemistry B, 2017, 121, 100-109.	2.6	9
94	Peptide-based short single \hat{l}^2 -strand mimics without hydrogen bonding or aggregation. Chemical Communications, 2020, 56, 1573-1576.	4.1	9
95	A remote substituent can determine magnitude of facial selectivity in benzobicyclo[2.2.2]octatrienes. Tetrahedron Letters, 1996, 37, 2609-2612.	1.4	8
96	Chemoselective generation of acyl phosphates, acylium ion equivalents, from carboxylic acids and an organophosphate ester in the presence of a BrĂ,nsted acid. Chemical Communications, 2017, 53, 1482-1485.	4.1	8
97	Electrophilic activation of aminocarboxylic acid by phosphate ester promotes Friedel–Crafts acylation by overcoming charge–charge repulsion. Organic and Biomolecular Chemistry, 2017, 15, 9398-9407.	2.8	8
98	Latent BrÃ,nsted Base Solvent-Assisted Amide Formation from Amines and Acid Chlorides. Synthesis, 2018, 50, 2041-2057.	2.3	8
99	Deciphering Subtype-Selective Modulations in TRPA1 Biosensor Channels. Current Neuropharmacology, 2015, 13, 266-278.	2.9	8
100	Orbital distortion in dibenzobicyclo(2.2.2)octatrienes. Biased epoxidation and dihydroxylation of the olefin moiety Chemical and Pharmaceutical Bulletin, 1992, 40, 3349-3351.	1.3	7
101	Non-steric facial selectivity in nucleophilic 1,4-conjugate additions. Tetrahedron Letters, 1997, 38, 425-428.	1.4	7
102	Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold. Molecules, 2018, 23, 2363.	3.8	7
103	Facile synthesis of 2,3-benzodiazepines using one-pot two-step phosphate-assisted acylation–hydrazine cyclization reactions. Organic and Biomolecular Chemistry, 2018, 16, 4013-4020.	2.8	7
104	Non-naturally Occurring Helical Molecules Can Interfere with p53–MDM2 and p53–MDMX Protein–Protein Interactions. Chemical and Pharmaceutical Bulletin, 2019, 67, 1139-1143.	1.3	7
105	Sequential Suzuki–Miyaura Coupling/Lewis Acid-Catalyzed Cyclization: An Entry to Functionalized Cycloalkane-Fused Naphthalenes. Organic Letters, 2020, 22, 6267-6271.	4.6	7
106	Stereoselection of sterically unbiased Diels–Alder dienes with spiro conjugation. Tetrahedron Letters, 2001, 42, 5257-5260.	1.4	6
107	Space-filling effects in membrane disruption by cationic amphiphiles. Bioorganic and Medicinal Chemistry, 2001, 9, 1013-1024.	3.0	5
108	Screening quality for Ca2+-activated potassium channel in IonWorks Quattro is greatly improved by using BAPTA-AM and ionomycin. Journal of Pharmacological and Toxicological Methods, 2013, 67, 16-24.	0.7	5

Τομομικό Ομωαδά

#	Article	IF	CITATIONS
109	A simple and effective preparation of quercetin pentamethyl ether from quercetin. Beilstein Journal of Organic Chemistry, 2018, 14, 3112-3121.	2.2	5
110	Switching Lysophosphatidylserine G Protein-Coupled Receptor Agonists to Antagonists by Acylation of the Hydrophilic Serine Amine. Journal of Medicinal Chemistry, 2021, 64, 10059-10101.	6.4	5
111	Generation of Orbitals that Control Molecular Reactivity:Â Projected Reactive Orbital Approach. Journal of Physical Chemistry A, 2005, 109, 7642-7647.	2.5	4
112	Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie, 2020, 132, 4017-4022.	2.0	4
113	Membrane Phospholipid Analogues as Molecular Rulers to Probe the Position of the Hydrophobic Contact Point of Lysophospholipid Ligands on the Surface of G-Protein-Coupled Receptor during Membrane Approach. Biochemistry, 2020, 59, 1173-1201.	2.5	4
114	Contribution of Solvents to Geometrical Preference in the Z/E Equilibrium of N-Phenylthioacetamide. Journal of Organic Chemistry, 2021, , .	3.2	4
115	Rhodium and Palladium Complexes of N-Heterocyclic Olefin (NHO) Ligand Fused with the 9,10-Dihydro-9,10-ethanoanthracene Framework. Organometallics, 2021, 40, 3668-3677.	2.3	4
116	Substituted Ethylene Dications. Yakugaku Zasshi, 1989, 109, 1-11.	0.2	3
117	Orbitals Distortion of Carbonyl and Olefin Groups. Unsymmetrization of .Pl. Lobes Arising from .PlPl. Orbital Interactions Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 596-607.	0.1	3
118	Synthesis and BK channel-opening activity of novel N-acylhydrazone derivatives from dehydroabietic acid. Chinese Chemical Letters, 2013, 24, 1023-1026.	9.0	3
119	Synthesis, structure and N–N bonding character of 1,1-disubstituted indazolium hexafluorophosphate. Chemical Communications, 2018, 54, 1881-1884.	4.1	3
120	Conformational preference of bicyclic βâ€amino acid dipeptides. Chirality, 2020, 32, 790-807.	2.6	3
121	Anchoring Cationic Amphiphiles for Nucleotide Delivery Significance of DNA Release from Cationic Liposomes for Transfection. Biological and Pharmaceutical Bulletin, 2007, 30, 1117-1122.	1.4	2
122	Orbital Phase Environments and Stereoselectivities. Topics in Current Chemistry, 2009, 289, 129-181.	4.0	2
123	Overall Shape Constraint of Alternating α/β-Hybrid Peptides Containing Bicyclic β-Proline. Organic Letters, 2019, 21, 7813-7817.	4.6	2
124	Unexpectedly rigid short peptide foldamers in which NH–Ĩ€ and CH–Ĩ€ interactions are preserved in solution. Chemical Communications, 2021, 57, 8344-8347.	4.1	2
125	Building on endogenous lipid mediators to design synthetic receptor ligands. European Journal of Medicinal Chemistry, 2022, 231, 114154.	5.5	1
126	Steric Course of Deprotonation/Substitution of Chelating/Dipoleâ€Stabilizingâ€Groupâ€Substituted αâ€Aminoâ€ and αâ€Oxynitriles. European Journal of Organic Chemistry, 2018, 2018, 4128-4134.	ۥ 2.4	0

#	Article	IF	CITATIONS
127	Frontispiece: Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
128	Frontispiz: Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie, 2020, 132, .	2.0	0
129	Lactam Amide Spinning. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1006-1012.	0.1	0