Corinne Rivasseau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18648/publications.pdf

Version: 2024-02-01

567281 752698 21 775 15 20 citations h-index g-index papers 21 21 21 1132 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. Journal of Chromatography A, 1998, 799, 155-169.	3.7	133
2	Accumulation of 2â€ <i>C</i> â€methylâ€ <scp>d</scp> â€erythritol 2,4â€cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4â€phosphate pathway of isoprenoid biosynthesis. Plant, Cell and Environment, 2009, 32, 82-92.	5.7	63
3	HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. Journal of Experimental Botany, 2014, 65, 1529-1540.	4.8	60
4	An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry. Energy and Environmental Science, 2013, 6, 1230.	30.8	58
5	Silver Accumulation in the Green Microalga <i>Coccomyxa actinabiotis</i> : Toxicity, in Situ Speciation, and Localization Investigated Using Synchrotron XAS, XRD, and TEM. Environmental Science & Env	10.0	54
6	Evaluation of an ELISA Kit for the Monitoring of Microcystins (Cyanobacterial Toxins) in Water and Algae Environmental Samples. Environmental Science & Environmental Science & 1520-1527.	10.0	53
7	Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Molecular Microbiology, 2011, 82, 988-997.	2.5	48
8	Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots. Metallomics, 2014, 6, 809-821.	2.4	38
9	<i>Coccomyxa actinabiotis</i> sp. nov. (Trebouxiophyceae, Chlorophyta), a new green microalga living in the spent fuel cooling pool of a nuclear reactor. Journal of Phycology, 2016, 52, 689-703.	2.3	38
10	Potential of immunoextraction coupled to analytical and bioanalytical methods (liquid) Tj ETQq0 0 0 rgBT /Overloo	k 10 Tf 50 5.4	387 Td (ch 36
	of cyanobacterial toxins. Analytica Chimica Acta, 1999, 399, 75-87.		
11	Rapid analysis of organic acids in plant extracts by capillary electrophoresis with indirect UV detection. Journal of Chromatography A, 2006, 1129, 283-290.	3.7	35
12	Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by ⟨sup⟩31⟨ sup⟩Pâ€NMR spectroscopy after specific inhibition of 2â€⟨i⟩C⟨ i⟩â€methylâ€⟨scp⟩d⟨ scp⟩â€erythrito 2,4â€cyclodiphosphate reductase. Effect of light and temperature. Plant, Cell and Environment, 2011, 34, 1241-1247.) 5.7	33
13	Early response of plant cell to carbon deprivation: <i>in vivo ⟨i⟩ ^{31 ⟨ sup>Pâ€NMR spectroscopy shows a quasiâ€instantaneous disruption on cytosolic sugars, phosphorylated intermediates of energy metabolism, phosphate partitioning, and intracellular pHs. New Phytologist, 2011, 189, 135-147.}</i>	7.3	31
14	Detection of cyanobacterial toxins (microcystins) in cell extracts by micellar electrokinetic chromatography. Biomedical Applications, 1996, 685, 53-57.	1.7	26
15	The Phosphate Fast-Responsive Genes <i>PECP1</i> and <i>PPsPase1</i> Affect Phosphocholine and Phosphoethanolamine Content. Plant Physiology, 2018, 176, 2943-2962.	4.8	22
16	A simple and efficient method for the long-term preservation of plant cell suspension cultures. Plant Methods, 2012, 8, 4.	4.3	13
17	Direct Meta-Analyses Reveal Unexpected Microbial Life in the Highly Radioactive Water of an Operating Nuclear Reactor Core. Microorganisms, 2020, 8, 1857.	3.6	11
18	Proteotyping Environmental Microorganisms by Phylopeptidomics: Case Study Screening Water from a Radioactive Material Storage Pool. Microorganisms, 2020, 8, 1525.	3.6	11

#	Article	IF	CITATIONS
19	Determination of microcystins in cyanobacterial samples using microliquid chromatography. Journal of Separation Science, 1996, 8, 541-551.	1.0	8
20	Cyclical Patterns Affect Microbial Dynamics in the Water Basin of a Nuclear Research Reactor. Frontiers in Microbiology, 2021, 12, 744115.	3.5	4
21	Omics for a Quick Survey of Microorganisms with Characteristics Interesting for Environmental Remediation of Radionuclides. , 0, , .		0