M Elena Olmos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1864338/publications.pdf

Version: 2024-02-01

75 2,370 papers citations

27 h-index

46 g-index

76
all docs do

76 docs citations 76 times ranked 1603 citing authors

#	Article	IF	CITATIONS
1	Influence of perhalophenyl groups in the TADF mechanism of diphosphino gold(<scp>i</scp>) complexes. Journal of Materials Chemistry C, 2022, 10, 4894-4904.	5.5	7
2	Spontaneous <i>in situ</i> generation of photoemissive aurophilic oligomers in water solution based on the 2-thiocytosine ligand. RSC Advances, 2022, 12, 8466-8473.	3.6	1
3	Rational Assembly of Metallophilic Gold(I)–Lead(II) and Gold(I)–Gold(I) Puzzle Pieces. Angewandte Chemie, 2021, 133, 650-654.	2.0	2
4	Rational Assembly of Metallophilic Gold(I)–Lead(II) and Gold(I)–Gold(I) Puzzle Pieces. Angewandte Chemie - International Edition, 2021, 60, 640-644.	13.8	11
5	Computational prediction of Au(<scp>i</scp>)â€"Pb(<scp>ii</scp>) bonding in coordination complexes and study of the factors affecting the formation of Au(<scp>i</scp>)â€"E(<scp>ii</scp>) (E = Ge, Sn, Pb) covalent bonds. Physical Chemistry Chemical Physics, 2021, 23, 10174-10183.	2.8	2
6	Multidisciplinary study on the hydrogelation of the digold($<$ scp> $iscp>) complex [{Au(<sup>9sup>(i>N-adeninate)}<sub>2sub>(i^1/4-dmpe)]: optical, rheological, and quasi-elastic neutron scattering perspectives. Inorganic Chemistry Frontiers, 2021, 8, 3707-3715.$	6.0	5
7	Time-Dependent Molecular Rearrangement of [Au(<i>N</i> ⁹ -adeninate)(PTA)] in Aqueous Solution and Aggregation-Induced Emission in a Hydrogel Matrix. Inorganic Chemistry, 2021, 60, 3667-3676.	4.0	4
8	An improved plasmonic Au–Ag/TiO2/rGO photocatalyst through entire visible range absorption, charge separation and high adsorption ability. New Journal of Chemistry, 2021, 45, 11727-11736.	2.8	6
9	Optical Properties in Heteronuclear Gold(I)/Silver(I) Complexes of Aliphatic Mixedâ€Donor Macrocycles Featuring Metallophilic Interactions. European Journal of Inorganic Chemistry, 2021, 2021, 4552-4559.	2.0	4
10	Perhalophenyl Three-Coordinate Gold(I) Complexes as TADF Emitters: A Photophysical Study from Experimental and Computational Viewpoints. Inorganic Chemistry, 2020, 59, 14236-14244.	4.0	15
11	Metallophilic Au(<scp>i</scp>)â< M(<scp>i</scp>) interactions (M = Tl, Ag) in heteronuclear complexes with 1,4,7-triazacyclononane: structural features and optical properties. Dalton Transactions, 2020, 49, 10983-10993.	3.3	7
12	Zigzag vs Helicoidal Gold–Silver 1D Chains: Influence of Subtle Interactions in the Spatial Arrangement of Supramolecular Systems. Inorganic Chemistry, 2020, 59, 9443-9451.	4.0	2
13	Versatile coordinative abilities of perhalophenyl-gold(I) fragments to Xantphos: Influence on the emissive properties. Journal of Organometallic Chemistry, 2020, 913, 121198.	1.8	7
14	Structural and Luminescence Properties of Heteronuclear Gold(I)/Thallium(I) Complexes Featuring Metallophilic Interactions Tuned by Quinoline Pendant Arm Derivatives of Mixed Donor Macrocycles. Inorganic Chemistry, 2020, 59, 6398-6409.	4.0	10
15	On the use of mixed thia/aza macrocycles in the development of fluorescent chemosensors for toxic heavy metals and fluorescent materials. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 682-688.	1.6	2
16	Balancing ionic and H-bonding interactions for the formation of Au(<scp>i</scp>) hydrometallogels. Dalton Transactions, 2019, 48, 7519-7526.	3.3	6
17	Temperature-assisted formation of reversible metallophilic Au–Ag interaction arrays. Dalton Transactions, 2019, 48, 5149-5155.	3.3	6
18	Stimuli-Responsive Solvatochromic Au(I)–Ag(I) Clusters: Reactivity and Photophysical Properties Induced by the Nature of the Solvent. Inorganic Chemistry, 2019, 58, 1501-1512.	4.0	23

#	Article	IF	CITATIONS
19	Unequal coordination environment in complexes of the type [Au2Ag2(R)4(L)2]n. An immiscible solvent mixture as a key point in the control of ligand replacement. Dalton Transactions, 2018, 47, 3231-3238.	3.3	4
20	Cooperative Au(I)···Au(I) Interactions and Hydrogen Bonding as Origin of a Luminescent Adeninate Hydrogel Formed by Ultrathin Molecular Nanowires. Inorganic Chemistry, 2018, 57, 3805-3817.	4.0	15
21	Lead encapsulation by a golden clamp through multiple electrostatic, metallophilic, hydrogen bonding and weak interactions. Chemical Communications, 2018, 54, 295-298.	4.1	15
22	Influence of the Number of Metallophilic Interactions and Structures on the Optical Properties of Heterometallic Au/Ag Complexes with Mixed-Donor Macrocyclic Ligands. Inorganic Chemistry, 2018, 57, 11099-11112.	4.0	19
23	Dispersive Forces and Dipole Moment Increase as Driving Forces for the Formation of an Unprecedented Metallophilic Heterotrimetallic System. Chemistry - A European Journal, 2018, 24, 13740-13743.	3.3	9
24	Luminescent aryl–group eleven metal complexes. Dalton Transactions, 2017, 46, 2046-2067.	3.3	55
25	Tuning Au(I)···TI(I) Interactions via Mixed Thia–Aza Macrocyclic Ligands: Effects on the Structural and Luminescence Properties. Inorganic Chemistry, 2017, 56, 12551-12563.	4.0	13
26	Tailor-Made Luminescent Polymers through Unusual Metallophilic Interaction Arrays Au···Au···Ag···Ag. Inorganic Chemistry, 2017, 56, 9281-9290.	4.0	23
27	New Au(<scp>i</scp>)–Cu(<scp>i</scp>) heterometallic complexes: the role of bridging pyridazine ligands in the presence of unsupported metallophilic interactions. Dalton Transactions, 2017, 46, 10941-10949.	3.3	7
28	Double Jahn–Teller Distortion in AuGe Complexes Leading to a Dual Blue–Orange Emission. ChemPlusChem, 2016, 81, 176-186.	2.8	6
29	New Insights into the Au(I)···Pb(II) Closed-Shell Interaction: Tuning of the Emissive Properties with the Intermetallic Distance. Inorganic Chemistry, 2016, 55, 10523-10534.	4.0	22
30	Tuning the Luminescent Properties of a Ag/Au Tetranuclear Complex Featuring Metallophilic Interactions via Solvent-Dependent Structural Isomerization. Inorganic Chemistry, 2016, 55, 11299-11310.	4.0	33
31	Synthesis of the molecular amalgam [{AuHg ₂ (o-C ₆ F ₄) ₃ }{Hg ₃ (o-C ₆ F <sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub< td=""><td>นเรา> (ระบุร</td><td>) 3(kc</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	น เ รา> (ระบุร) 3(kc
32	Study of the Nature of Closed-Shell Hg $\sup \cdot \sup \hat{A} \cdot \hat$	2.3	27
33	1,4-Bis(2′-pyridylethynyl)benzene as a ligand in heteronuclear gold–thallium complexes. Influence of the ancillary ligands on their optical properties. Dalton Transactions, 2015, 44, 6719-6730.	3.3	9
34	The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid. Chemical Communications, 2015, 51, 16691-16694.	4.1	11
35	The gold(<scp>i</scp>)â <lead(<scp>ii) interaction: a relativistic connection. Chemical Science, 2015, 6, 2022-2026.</lead(<scp>	7.4	37
36	Double Photoinduced Jahn–Teller Distortion of Tetrahedral Au ^I Sn ^{II} Complexes. ChemPlusChem, 2014, 79, 67-76.	2.8	19

#	Article	IF	CITATIONS
37	Synthesis and plasmonic properties of monodisperse Au–Ag alloy nanoparticles of different compositions from a single-source organometallic precursor. Journal of Materials Chemistry C, 2014, 2, 2975.	5.5	28
38	Theoretical studies on an unusual [Ag]+ \hat{a} (Au] \hat{a} (Au] \hat{a} (Ag]+ metallophilic pattern: Dispersive forces vs. classical coulomb forces. Computational and Theoretical Chemistry, 2014, 1030, 53-58.	2.5	8
39	Experimental and Theoretical Comparison of the Metallophilicity between d ¹⁰ â€"d ¹⁰ â€"d ¹⁰ 3€"d ¹⁰ 10 </td <td>īЫ≯O</td> <td>30</td>	īЫ≯O	30
40	Copper(<scp>i</scp>)-assisted red-shifted phosphorescence in Au(<scp>i</scp>)â <cu(<scp>i) heteropolynuclear complexes. Dalton Transactions, 2014, 43, 16486-16497.</cu(<scp>	3.3	31
41	Influence of Crown Thioether Ligands in the Structures and of Perhalophenyl Groups in the Optical Properties of Complexes with Argentoaurophilic Interactions. Inorganic Chemistry, 2014, 53, 10471-10484.	4.0	16
42	Luminescent gold–silver complexes derived from neutral bis(perfluoroaryl)diphosphine gold(i) precursors. Dalton Transactions, 2013, 42, 4267.	3.3	17
43	Heterometallic gold(i)–thallium(i) compounds with crown thioethers. Dalton Transactions, 2013, 42, 11559.	3.3	20
44	Very Short Metallophilic Interactions Induced by Three-Center–Two-Electron Perhalophenyl Ligands in Phosphorescent Au–Cu Complexes. Organometallics, 2012, 31, 3720-3729.	2.3	19
45	Amalgamating at the molecular level. A study of the strong closed-shell Au(i)â< Hg(ii) interaction. Chemical Communications, 2011, 47, 6795.	4.1	45
46	Influence of the Electronic Characteristics of N-Donor Ligands in the Excited State of Heteronuclear Gold(I)–Copper(I) Systems. Inorganic Chemistry, 2011, 50, 6910-6921.	4.0	25
47	Metal-Induced Phosphorescence in (Pentafluorophenyl)gold(III) Complexes. Organometallics, 2011, 30, 4486-4489.	2.3	13
48	Making the Golden Connection: Reversible Mechanochemical and Vapochemical Switching of Luminescence from Bimetallic Gold–Silver Clusters Associated through Aurophilic Interactions. Journal of the American Chemical Society, 2011, 133, 16358-16361.	13.7	119
49	Basicity of bisperhalophenyl aurates toward closed-shell metal ions: metallophilicity and additional interactions. Theoretical Chemistry Accounts, 2011, 129, 593-602.	1.4	9
50	Intermetallic coinage metal-catalyzed functionalization of alkanes with ethyl diazoacetate: Gold as a ligand. Inorganica Chimica Acta, 2011, 369, 146-149.	2.4	14
51	Theoretical study of the closed-shell d10 \hat{a} e"d10 Au(I) \hat{a} e"Cu(I) attraction in complexes in extended unsupported chains. Computational and Theoretical Chemistry, 2011, 965, 163-167.	2.5	15
52	Ketimine synthesis in the coordination sphere of thallium (I). Inorganica Chimica Acta, 2010, 363, 1965-1969.	2.4	9
53	Long-Chain Ketimine Synthesis in a Goldâ^'Thallium Polymer. Organometallics, 2010, 29, 2951-2959.	2.3	19
54	Combining Aurophilic Interactions and Halogen Bonding To Control the Luminescence from Bimetallic Goldâ [^] Silver Clusters. Journal of the American Chemical Society, 2010, 132, 456-457.	13.7	188

#	Article	IF	Citations
55	Vapochromism in Complexes of Stoichiometry [Au2Ag2R4L2]n. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 1500-1512.	0.7	24
56	Multiple Evidence for Gold(I)â<â<â <silver(i) -="" 15,="" 2009,="" 6222-6233.<="" a="" chemistry="" european="" in="" interactions="" journal,="" solution.="" td=""><td>3.3</td><td>36</td></silver(i)>	3.3	36
57	Unsupported Au(i)â <cu(i) ,="" 2009,="" 7509.<="" and="" aurophilicity="" dalton="" influence="" interactions:="" ligands="" luminescence.="" nitrile="" of="" on="" structure="" td="" the="" transactions,=""><td>3.3</td><td>51</td></cu(i)>	3.3	51
58	1,2-Dibromo- and 1,2-Diiodotetrafluorobenzene as Precursors of Anionic Homo- and Heterometallic Gold Complexes. Organometallics, 2008, 27, 2971-2979.	2.3	24
59	Vapochromic Behavior of {Ag ₂ (Et ₂) ₂ [Au(C ₆ F ₅) ₂] _{2 with Volatile Organic Compounds. Inorganic Chemistry, 2008, 47, 8069-8076.}	<b sub>} <s< td=""><td><i></i>i/>n<iokdus< td=""></iokdus<></td></s<>	<i></i> i/>n <iokdus< td=""></iokdus<>
60	Experimental and theoretical evidence of the first Au(i) \hat{a}^{-} Bi(iii) interaction. Chemical Communications, 2007, , 571-573.	4.1	62
61	Pyridine gold complexes. an emerging class of luminescent materials. Gold Bulletin, 2007, 40, 172-183.	2.7	31
62	Photophysical and Theoretical Studies on Luminescent Tetranuclear Coinage Metal Building Blocks. Organometallics, 2006, 25, 3639-3646.	2.3	79
63	Easy Ketimine Formation Assisted by Heteropolynuclear Goldâ^'Thallium Complexes. Organometallics, 2006, 25, 1689-1695.	2.3	30
64	Auâ^'Tl Linear Chains as Lewis Acids toward [Au(C6X5)2]- Metalloligands:  The First Anionic Heteropolymetallic Chains. Organometallics, 2005, 24, 1631-1637.	2.3	35
65	Unsupported Gold(I)â^'Copper(I) Interactions through η1Au-[Au(C6F5)2]-Coordination to Cu+Lewis Acid Sites. Inorganic Chemistry, 2005, 44, 1163-1165.	4.0	48
66	A Family of Auâ^'Tl Loosely Bound Butterfly Clusters. Inorganic Chemistry, 2005, 44, 6012-6018.	4.0	38
67	A Detailed Study of the Vapochromic Behavior of {Tl[Au(C6Cl5)2]}n. Inorganic Chemistry, 2004, 43, 3573-3581.	4.0	104
68	Thallium(I) Acetylacetonate as Building Blocks of Luminescent Supramolecular Architectures. Organometallics, 2004, 23, 774-782.	2.3	47
69	Luminescent Gold(I)-Thallium(I) Arrays through N-Bidentate Building Blocks. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 1379-1386.	0.7	22
70	Theoretical and Photoluminescence Studies on the d10–s2 Aul–TlI Interaction in Extended Unsupported Chains. Chemistry - A European Journal, 2003, 9, 456-465.	3.3	75
71	{Tl[Au(C6Cl5)2]}n:Â A Vapochromic Complex. Journal of the American Chemical Society, 2003, 125, 2022-2023.	13.7	207
72	Synthesis, Structure, and Photophysical Studies of Luminescent Two- and Three-Dimensional Goldâ^'Thallium Supramolecular Arrays. Inorganic Chemistry, 2002, 41, 1056-1063.	4.0	79

#	Article	IF	CITATIONS
73	Do Aurophilic Interactions Compete against Hydrogen Bonds? Experimental Evidence and Rationalization Based on ab Initio Calculations. Journal of the American Chemical Society, 2002, 124, 6781-6786.	13.7	83
74	[Au2Tl2(C6Cl5)4]·(CH3)2CO: A Luminescent Loosely Bound Butterfly Cluster with a Tl(I)â^'Tl(I) Interaction. Journal of the American Chemical Society, 2002, 124, 5942-5943.	13.7	66
75	2-(Diphenylphosphino)-pyridine as an Ambidentate Ligand in Homo-and Hetero-binuclear Complexes of Copper, Silver, and Gold. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1997, 52, 203-208.	0.7	34