Nathalie Pujol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863588/publications.pdf

Version: 2024-02-01

236925 214800 3,720 49 25 47 citations h-index g-index papers 63 63 63 2717 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	C. elegans: out on an evolutionary limb. Immunogenetics, 2022, 74, 63-73.	2.4	7
2	ATFS-1 plays no repressive role in the regulation of epidermal immune response MicroPublication Biology, 2022, 2022, .	0.1	0
3	Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Current Biology, 2021, 31, 564-577.e12.	3.9	35
4	Innate immunity in C. elegans. Current Topics in Developmental Biology, 2021, 144, 309-351.	2.2	39
5	Comparison of lipidome profiles of Caenorhabditis elegansâ€"results from an inter-laboratory ring trial. Metabolomics, 2021, 17, 25.	3.0	3
6	Antagonistic fungal enterotoxins intersect at multiple levels with host innate immune defences. PLoS Genetics, 2021, 17, e1009600.	3 . 5	11
7	mutants have an increased fungal spore adhesion that is not rescued by. MicroPublication Biology, 2021, 2021, .	0.1	3
8	is upregulated by fungal infection in a GPA-12 and STA-2-independent manner in the epidermis. MicroPublication Biology, 2021, 2021, .	0.1	1
9	IL-17: good fear no tears. Nature Immunology, 2020, 21, 1315-1316.	14.5	5
10	New Strains for Tissue-Specific RNAi Studies in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 4167-4176.	1.8	24
11	Microtubule plus-end dynamics link wound repair to the innate immune response. ELife, 2020, 9, .	6.0	27
12	Inducible expression of encoding a nematode specific secreted peptide in the adult epidermis upon fungal infection. MicroPublication Biology, 2019, 2019, .	0.1	0
13	A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in <i>Caenorhabditis elegans </i>	2.9	84
14	Modulatory upregulation of an insulin peptide gene by different pathogens in <i>C.Âelegans</i> Virulence, 2018, 9, 648-658.	4.4	25
15	An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and Infection. Neuron, 2018, 97, 125-138.e5.	8.1	79
16	Evolutionary plasticity in the innate immune function of Akirin. PLoS Genetics, 2018, 14, e1007494.	3.5	31
17	A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biology, 2016, 14, 35.	3.8	60
18	Coordinated inhibition of C/EBP by Tribbles in multiple tissues is essential for Caenorhabditis elegans development. BMC Biology, 2016, 14, 104.	3.8	33

#	Article	IF	Citations
19	Virulence profile: Nathalie Pujol. Virulence, 2016, 7, 63-64.	4.4	О
20	Local and long-range activation of innate immunity by infection and damage in C. elegans. Current Opinion in Immunology, 2016, 38, 1-7.	5.5	49
21	Mechanisms of innate immunity in <i>C. elegans</i> epidermis. Tissue Barriers, 2015, 3, e1078432.	3.2	48
22	Clone Mapper: An Online Suite of Tools for RNAi Experiments in <i>Caenorhabditis elegans</i> Genes, Genomes, Genetics, 2014, 4, 2137-2145.	1.8	17
23	Activation of a G protein–coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nature Immunology, 2014, 15, 833-838.	14.5	113
24	Independent Synchronized Control and Visualization of Interactions between Living Cells and Organisms. Biophysical Journal, 2014, 106, 2096-2104.	0.5	25
25	Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses. PLoS ONE, 2014, 9, e92552.	2.5	35
26	The LIM homeobox gene ceh-14 is required for phasmid function and neurite outgrowth. Developmental Biology, 2013, 380, 314-323.	2.0	19
27	The Origin and Function of Anti-Fungal Peptides in C. elegans: Open Questions. Frontiers in Immunology, 2012, 3, 237.	4.8	28
28	The Pseudokinase NIPI-4 Is a Novel Regulator of Antimicrobial Peptide Gene Expression. PLoS ONE, 2012, 7, e33887.	2.5	36
29	Unusual Regulation of a STAT Protein by an SLC6 Family Transporter in C.Âelegans Epidermal Innate Immunity. Cell Host and Microbe, 2011, 9, 425-435.	11.0	93
30	Cellular Homeostasis: Coping with ER Overload During an Immune Response. Current Biology, 2010, 20, R452-R455.	3.9	4
31	Innate Immunity in C. elegans. Advances in Experimental Medicine and Biology, 2010, 708, 105-121.	1.6	91
32	The fatty acid synthase <i>fasn-1</i> acts upstream of WNK and Ste20/GCK-VI kinases to modulate antimicrobial peptide expression in <i>C. elegans</i> epidermis. Virulence, 2010, 1, 113-122.	4.4	50
33	Negative regulation of <i>Caenorhabditis elegans</i> epidermal damage responses by death-associated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1457-1461.	7.1	70
34	Antifungal Innate Immunity in C. elegans: PKCδ Links G Protein Signaling and a Conserved p38 MAPK Cascade. Cell Host and Microbe, 2009, 5, 341-352.	11.0	106
35	Distinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis. Current Biology, 2008, 18, 481-489.	3.9	267
36	Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides. PLoS Pathogens, 2008, 4, e1000105.	4.7	212

#	Article	IF	CITATIONS
37	Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2295-2300.	7.1	320
38	Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biology, 2007, 8, R194.	9.6	194
39	A Reverse Genetic Analysis of Components of the Toll Signaling Pathway in Caenorhabditis elegans. Current Biology, 2006, 16, 1477.	3.9	1
40	Pathogen Avoidance Using Toll Signaling in C. elegans. , 2005, , 162-167.		0
41	XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Developmental Biology, 2005, 278, 49-59.	2.0	31
42	TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature Immunology, 2004, 5, 488-494.	14.5	433
43	Characterisation of set-1, a conserved PR/SET domain gene in Caenorhabditis elegans. Gene, 2002, 292, 33-41.	2.2	6
44	Inducible Antibacterial Defense System in C. elegans. Current Biology, 2002, 12, 1209-1214.	3.9	417
45	C. etegans: des montagnes de données. Medecine/Sciences, 2002, 18, 97-99.	0.2	1
46	<i>unc-53</i> controls longitudinal migration in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 3367-3379.	2.5	84
47	unc-53 controls longitudinal migration in C. elegans. Development (Cambridge), 2002, 129, 3367-79.	2.5	45
48	A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology, 2001, 11, 809-821.	3.9	376
49	The Caenorhabditis elegans unc-32 Gene Encodes Alternative Forms of a Vacuolar ATPase aSubunit. Journal of Biological Chemistry, 2001, 276, 11913-11921.	3.4	69