
Scott A Tibbetts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Polymorphism in the Epstein-Barr Virus EBER2 Noncoding RNA Drives <i>In Vivo</i> Expansion of Latently Infected B Cells. MBio, 2022, 13, .	4.1	2
2	Empirical Validation of Overlapping Virus IncRNAs and Coding Transcripts by Northern Blot. Methods in Molecular Biology, 2021, 2348, 243-253.	0.9	3
3	EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathogens, 2021, 17, e1009217.	4.7	19
4	Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annual Review of Virology, 2021, 8, 349-371.	6.7	29
5	Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Scientific Reports, 2020, 10, 2371.	3.3	18
6	ldentification of murine gammaherpesvirus 68 miRNA-mRNA hybrids reveals miRNA target conservation among gammaherpesviruses including host translation and protein modification machinery. PLoS Pathogens, 2019, 15, e1007843.	4.7	25
7	A Gammaherpesvirus MicroRNA Targets EWSR1 (Ewing Sarcoma Breakpoint Region 1) <i>In Vivo</i> To Promote Latent Infection of Germinal Center B Cells. MBio, 2019, 10, .	4.1	9
8	Genome-wide Transcript Structure Resolution Reveals Abundant Alternate Isoform Usage from Murine Gammaherpesvirus 68. Cell Reports, 2019, 27, 3988-4002.e5.	6.4	32
9	Gammaherpesvirus RNAs Come Full Circle. MBio, 2019, 10, .	4.1	23
10	Epstein–Barr virus EBER1 and murine gammaherpesvirus TMER4 share conserved in vivo function to promote B cell egress and dissemination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25392-25394.	7.1	12
11	Comparative Analysis of Gammaherpesvirus Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. Journal of Virology, 2019, 93, .	3.4	58
12	Gammaherpesvirus Readthrough Transcription Generates a Long Non-Coding RNA That Is Regulated by Antisense miRNAs and Correlates with Enhanced Lytic Replication In Vivo. Non-coding RNA, 2019, 5, 6.	2.6	18
13	Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends in Cancer, 2018, 4, 729-740.	7.4	8
14	Mouse Gamma Herpesvirus MHV-68 Induces Severe Gastrointestinal (GI) Dilatation in Interferon Gamma Receptor-Deficient Mice (IFNγRâ^')â^') That Is Blocked by Interleukin-10. Viruses, 2018, 10, 518.	3.3	3
15	The Epstein Barr virus circRNAome. PLoS Pathogens, 2018, 14, e1007206.	4.7	112
16	Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice. PLoS Pathogens, 2018, 14, e1006843.	4.7	9
17	A Gammaherpesvirus Noncoding RNA Is Essential for Hematogenous Dissemination and Establishment of Peripheral Latency. MSphere, 2016, 1, .	2.9	33
18	ll̂ºB Kinase ε Is an NFATc1 Kinase that Inhibits T Cell Immune Response. Cell Reports, 2016, 16, 405-418.	6.4	54

SCOTT A TIBBETTS

#	Article	IF	CITATIONS
19	Recent advances in understanding norovirus pathogenesis. Journal of Medical Virology, 2016, 88, 1837-1843.	5.0	40
20	Reactive Center Loop (RCL) Peptides Derived from Serpins Display Independent Coagulation and Immune Modulating Activities. Journal of Biological Chemistry, 2016, 291, 2874-2887.	3.4	39
21	Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PLoS Pathogens, 2015, 11, e1005001.	4.7	18
22	Emerging Roles of Herpesvirus microRNAs During In Vivo Infection and Pathogenesis. Current Pathobiology Reports, 2015, 3, 209-217.	3.4	12
23	Human norovirus culture in B cells. Nature Protocols, 2015, 10, 1939-1947.	12.0	202
24	Gammaherpesvirus Small Noncoding RNAs Are Bifunctional Elements That Regulate Infection and Contribute to Virulence <i>In Vivo</i> . MBio, 2015, 6, e01670-14.	4.1	42
25	Virus-Encoded MicroRNAs Facilitate Gammaherpesvirus Latency and Pathogenesis <i>In Vivo</i> . MBio, 2014, 5, e00981-14.	4.1	68
26	A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells In Vivo. PLoS Pathogens, 2014, 10, e1003916.	4.7	25
27	Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 2014, 346, 755-759.	12.6	689
28	Myxomavirus-Derived Serpin Prolongs Survival and Reduces Inflammation and Hemorrhage in an Unrelated Lethal Mouse Viral Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 4114-4127.	3.2	44
29	Unbiased Mutagenesis of MHV68 LANA Reveals a DNA-Binding Domain Required for LANA Function In Vitro and In Vivo. PLoS Pathogens, 2012, 8, e1002906.	4.7	23
30	Immature and Transitional B Cells Are Latency Reservoirs for a Gammaherpesvirus. Journal of Virology, 2010, 84, 13045-13052.	3.4	56
31	Use of a Virus-Encoded Enzymatic Marker Reveals that a Stable Fraction of Memory B Cells Expresses Latency-Associated Nuclear Antigen throughout Chronic Gammaherpesvirus Infection. Journal of Virology, 2010, 84, 7523-7534.	3.4	46
32	Murine Gamma-Herpesvirus 68 Hijacks MAVS and IKKβ to Initiate Lytic Replication. PLoS Pathogens, 2010, 6, e1001001.	4.7	57
33	A Replication-Defective Gammaherpesvirus Efficiently Establishes Long-Term Latency in Macrophages but Not in B Cells In Vivo. Journal of Virology, 2008, 82, 8500-8508.	3.4	23
34	A Î ³ -herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology, 2006, 353, 210-219.	2.4	29
35	Murine Cammaherpesvirus 68 Infection Is Associated with Lymphoproliferative Disease and Lymphoma in BALB β2 Microglobulin-Deficient Mice. Journal of Virology, 2005, 79, 14668-14679.	3.4	98
36	Establishment and Maintenance of Gammaherpesvirus Latency Are Independent of Infective Dose and Route of Infection. Journal of Virology, 2003, 77, 7696-7701.	3.4	96

#	Article	IF	CITATIONS
37	Effective Vaccination against Long-Term Gammaherpesvirus Latency. Journal of Virology, 2003, 77, 2522-2529.	3.4	68
38	Immune Control of the Number and Reactivation Phenotype of Cells Latently Infected with a Gammaherpesvirus. Journal of Virology, 2002, 76, 7125-7132.	3.4	99