
Xiaochen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863109/publications.pdf Version: 2024-02-01

XIAOCHEN WANC

#	Article	IF	CITATIONS
1	Ribonucleotide reductase M2 subunit silencing suppresses tumorigenesis in pancreatic cancer via inactivation of PI3K/AKT/mTOR pathway. Pancreatology, 2022, 22, 401-413.	1.1	5
2	Familial Breast Cancer: Disease Related Gene Mutations and Screening Strategies for Chinese Population. Frontiers in Oncology, 2021, 11, 740227.	2.8	3
3	Effects of Oxygen Atoms Introduced at Different Positions of Non-Fullerene Acceptors in the Performance of Organic Solar Cells with Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2020, 12, 1094-1102.	8.0	39
4	Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Science China Chemistry, 2020, 63, 1666-1674.	8.2	86
5	A thieno[3,4- <i>b</i>]pyrazine-based A ₂ –A ₁ –D–A ₁ –A _{2type low bandgap non-fullerene acceptor with 1,1-dicyanomethylene-3-indanone (IC) as the terminal group. Journal of Materials Chemistry C, 2019, 7, 8820-8824.}	ub> 5.5	10
6	Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2- <i>b</i>]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 42412-42419.	8.0	13
7	Side-chain effect in ethenylene fused thiophene-vinylene-thiophene (ETVT) based photovoltaic polymers. Polymer, 2019, 167, 31-39.	3.8	5
8	First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions. Physical Chemistry Chemical Physics, 2019, 21, 2128-2139.	2.8	82
9	Introducing Fluorine and Sulfur Atoms into Quinoxaline-Based p-type Polymers To Gradually Improve the Performance of Fullerene-Free Organic Solar Cells. ACS Macro Letters, 2019, 8, 743-748.	4.8	83
10	Changing the π-bridge from thiophene to thieno[3,2- <i>b</i>]thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chemical Communications, 2019, 55, 6708-6710.	4.1	88
11	Multiscale Self-Assembly of a Phenyl-Flanked Diketopyrrolopyrrole Derivative: A Solution-Processable Building Block for ï€-Conjugated Supramolecular Polymers. Langmuir, 2019, 35, 5626-5634.	3.5	6
12	Planar Benzofuran Inside-Fused Perylenediimide Dimers for High <i>V</i> _{OC} Fullerene-Free Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 4203-4210.	8.0	38
13	Aromaticâ€Diimideâ€Based nâ€Type Conjugated Polymers for Allâ€Polymer Solar Cell Applications. Advanced Materials, 2019, 31, e1804699.	21.0	191
14	Near-infrared fluorescent pyrrolopyrrole cyanine derivatives and colloidal nanoparticles with tunable optical properties for in vivo bioimaging. Dyes and Pigments, 2018, 154, 269-274.	3.7	14
15	Design and Synthesis of a Novel nâ€īype Polymer Based on Asymmetric Rylene Diimide for the Application in Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700715.	3.9	27
16	Tunable Förster Resonance Energy Transfer in Colloidal Nanoparticles Composed of Polycaprolactoneâ€Tethered Donors and Acceptors: Enhanced Nearâ€Infrared Emission and Compatibility for In Vitro and In Vivo Bioimaging. Advanced Functional Materials, 2018, 28, 1705226.	14.9	18
17	A novel thiazole based acceptor for fullerene-free organic solar cells. Dyes and Pigments, 2018, 149, 470-474.	3.7	81
18	Introducing Four 1,1-Dicyanomethylene-3-indanone End-Capped Groups as an Alternative Strategy for the Design of Small-Molecular Nonfullerene Acceptors. Journal of Physical Chemistry C, 2018, 122, 29122-29128.	3.1	79

XIAOCHEN WANG

#	Article	IF	CITATIONS
19	Theranostic Colloidal Nanoparticles of Pyrrolopyrrole Cyanine Derivatives for Simultaneous Near-Infrared Fluorescence Cancer Imaging and Photothermal Therapy. ACS Applied Bio Materials, 2018, 1, 1109-1117.	4.6	15
20	A ₂ –A ₁ –D–A ₁ –A ₂ Type Non-Fullerene Acceptors with 2-(1,1-Dicyanomethylene)rhodanine as the Terminal Groups for Poly(3-hexylthiophene)-Based Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 34427-34434.	ו 8.0	52
21	A small molecular electron acceptor based on asymmetric hexacyclic core of thieno[1,2- b]indaceno[5,6- b ′]thienothiophene for efficient fullerene-free polymer solar cells. Science Bulletin, 2018, 63, 845-852.	9.0	28
22	Recent progress in porphyrin-based materials for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 16769-16797.	10.3	215
23	Utilizing Benzotriazole and Indacenodithiophene Units to Construct Both Polymeric Donor and Small Molecular Acceptors to Realize Organic Solar Cells With High Open-Circuit Voltages Beyond 1.2 V. Frontiers in Chemistry, 2018, 6, 147.	3.6	20
24	Ring Fusion of Thiophene–Vinylene–Thiophene (TVT) Benefits Both Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules, 2018, 51, 4598-4607.	4.8	10
25	Robust Colloidal Nanoparticles of Pyrrolopyrrole Cyanine Jâ€Aggregates with Bright Nearâ€Infrared Fluorescence in Aqueous Media: From Spectral Tailoring to Bioimaging Applications. Chemistry - A European Journal, 2017, 23, 4310-4319.	3.3	45
26	The effect of conjugated π-bridge and fluorination on the properties of asymmetric-building-block-containing polymers (ABC polymers) based on dithienopyran donor and benzothiadiazole acceptors. Polymer Chemistry, 2017, 8, 5396-5406.	3.9	17
27	Medium Bandgap D-A Type Photovoltaic Polymers Based on an Asymmetric Dithienopyran Donor and a Benzotriazole Acceptor. Polymers, 2017, 9, 516.	4.5	3
28	Effect of fluorination and symmetry on the properties of polymeric photovoltaic materials based on an asymmetric building block. RSC Advances, 2016, 6, 90051-90060.	3.6	23
29	Theranostic unimolecular micelles of highly fluorescent conjugated polymer bottlebrushes for far red/near infrared bioimaging and efficient anticancer drug delivery. Polymer Chemistry, 2016, 7, 7455-7468.	3.9	57
30	Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging. Biomacromolecules, 2016, 17, 1673-1683.	5.4	46
31	Synthesis of conjugated polymers via an exclusive direct-arylation coupling reaction: a facile and straightforward way to synthesize thiophene-flanked benzothiadiazole derivatives and their copolymers. Polymer Chemistry, 2015, 6, 1846-1855.	3.9	70
32	Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donor–π–acceptor polymer semiconductors. Polymer Chemistry, 2014, 5, 502-511.	3.9	55
33	Synthesis of donor–acceptor conjugated polymers based on benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and 2,1,3-benzothiadiazole <i>via</i> direct arylation polycondensation: towards efficient C–H activation in nonpolar solvents. Polymer Chemistry, 2014, 5, 5784-5792.	3.9	87
34	Efficient polymer solar cells based on a broad bandgap D–A copolymer of "zigzag― naphthodithiophene and thieno[3,4-c]pyrrole-4,6-dione. Journal of Materials Chemistry A, 2013, 1, 1540-1543.	10.3	55
35	Synthesis and characterization of porphyrinâ€based Dâ€Ï€â€A conjugated polymers for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 2243-2251.	2.3	12
36	Thieno[3,2- <i>b</i>]thiophene-Bridged Dâ~π–A Polymer Semiconductor Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> à€2]dithiophene and Benzoxadiazole. Macromolecules, 2013, 46, 4805-4812.	4.8	66

XIAOCHEN WANG

#	Article	IF	CITATIONS
37	Unusual strong fluorescence of a hyperbranched phosphate: discovery and explanations. RSC Advances, 2013, 3, 8269.	3.6	33
38	Synthesis and electronic energyâ€level regulation of imideâ€fused poly(thienylene vinylene) derivatives. Journal of Polymer Science Part A, 2013, 51, 4975-4982.	2.3	8
39	Effects of π-Conjugated Bridges on Photovoltaic Properties of Donor-π-Acceptor Conjugated Copolymers. Macromolecules, 2012, 45, 1208-1216.	4.8	191
40	Effect of Oligothiophene π-Bridge Length on the Photovoltaic Properties of D–A Copolymers Based on Carbazole and Quinoxalinoporphyrin. Macromolecules, 2012, 45, 7806-7814.	4.8	54
41	Porphyrin-containing D–π–A conjugated polymer with absorption over the entire spectrum of visible light and its applications in solar cells. Journal of Materials Chemistry, 2012, 22, 11006.	6.7	33
42	Narrow band gap D–A copolymer of indacenodithiophene and diketopyrrolopyrrole with deep HOMO level: Synthesis and application in fieldâ€effect transistors and polymer solar cells. Journal of Polymer Science Part A, 2012, 50, 371-377.	2.3	35
43	A furan-bridged D-ï€-A copolymer with deep HOMO level: synthesis and application in polymer solar cells. Polymer Chemistry, 2011, 2, 2872.	3.9	71
44	A novel poly(thienylenevinylene) derivative for application in polymer solar cells. Polymer Chemistry, 2011, 2, 2102.	3.9	17
45	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Alkyl-Substituted Indacenodithiophene Donor Unit. Chemistry of Materials, 2011, 23, 4264-4270.	6.7	193
46	The tunability of the electronic structures for poly(carbosilylsilanes): a theoretical study. Structural Chemistry, 2010, 21, 583-592.	2.0	2
47	Synthesis and properties of partially conjugated hyperbranched lightâ€emitting polymers. Journal of Applied Polymer Science, 2010, 117, 517-523.	2.6	4