
Rodney A Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiral Bis-ï€-allylpalladium Complex Catalyzed Asymmetric Allylation of Imines: Enhancement of the Enantioselectivity and Chemical Yield in the Presence of Water. Journal of the American Chemical Society, 2003, 125, 14133-14139.	13.7	131
2	The First Catalytic Asymmetric Allylation of Imines with the Tetraallylsilaneâ^'TBAFâ^'MeOH System, Using the Chiral Bis-ï€-allylpalladium Complex. Journal of Organic Chemistry, 2004, 69, 735-738.	3.2	98
3	Recent advances in Wacker oxidation: from conventional to modern variants and applications. Catalysis Science and Technology, 2020, 10, 7448-7470.	4.1	62
4	Catalytic allylic functionalization <i>via</i> π-allyl palladium chemistry. Organic and Biomolecular Chemistry, 2019, 17, 8647-8672.	2.8	61
5	Hypervalent Iodine as a Terminal Oxidant in Wacker-Type Oxidation of Terminal Olefins to Methyl Ketones. Journal of Organic Chemistry, 2016, 81, 2113-2121.	3.2	60
6	Iron(III) Sulfate as Terminal Oxidant in the Synthesis of Methyl Ketones via Wacker Oxidation. Journal of Organic Chemistry, 2014, 79, 5787-5793.	3.2	48
7	Recent advances in the Overman rearrangement: synthesis of natural products and valuable compounds. Organic and Biomolecular Chemistry, 2017, 15, 2672-2710.	2.8	44
8	A Chiron Approach to the Total Synthesis of (â^')-Juglomycin A, (+)-Kalafungin, (+)-Frenolicin B, and (+)-Deoxyfrenolicin. Journal of Organic Chemistry, 2012, 77, 10455-10460.	3.2	43
9	The Orthoester Johnson–Claisen Rearrangement in the Synthesis of Bioactive Molecules, Natural Products, and Synthetic Intermediates – Recent Advances. European Journal of Organic Chemistry, 2014, 2014, 2833-2871.	2.4	43
10	A Protecting-Group-Free Synthesis of Hagen's Gland Lactones. Journal of Organic Chemistry, 2012, 77, 9357-9360.	3.2	40
11	Catalytic Asymmetric Carbalkoxyallylation of Imines with the Chiral Bis-Ï€-allylpalladium Complex. Journal of Organic Chemistry, 2004, 69, 3562-3564.	3.2	38
12	Total Synthesis of (+)-Cephalosporolide E and (-)-Cephalosporolide F en route to Bassianolone. Synlett, 2010, 2010, 158-160.	1.8	38
13	Total Synthesis of (+)-Demethoxycardinalin 3. Journal of Organic Chemistry, 2010, 75, 7029-7032.	3.2	37
14	Stereoselective Total Synthesis of (+)â€Nephrosteranic Acid and (+)â€Roccellaric Acid through Asymmetric Dihydroxylation and Johnson–Claisen Rearrangement. European Journal of Organic Chemistry, 2011, 2011, 1106-1112.	2.4	31
15	A 12-membered to a strained 11-membered ring: first stereoselective total synthesis of (â~')-asteriscunolide C. Chemical Communications, 2013, 49, 3354.	4.1	31
16	A short enantioselective synthesis of (+)-eleutherin, (+)-allo-eleutherin and a formal synthesis of (+)-nocardione B. Tetrahedron Letters, 2008, 49, 6341-6343.	1.4	29
17	Total Syntheses of All Stereoisomers of Phenatic Acid B. Journal of Organic Chemistry, 2009, 74, 8826-8829.	3.2	28
18	Stepâ€Economic and Protectingâ€Groupâ€Free Total Synthesis of (+)â€Cardiobutanolide. Asian Journal of Organic Chemistry, 2013, 2, 74-84.	2.7	28

#	Article	IF	CITATIONS
19	A short synthesis of (+)-(S)-kurasoin B. Tetrahedron: Asymmetry, 2008, 19, 15-18.	1.8	26
20	A highly enantioselective synthesis of (â^')- and (+)-juglomycin A through Dötz annulation and asymmetric dihydroxylation. Tetrahedron Letters, 2008, 49, 3899-3901.	1.4	26
21	Synthesis of methyl ketones from terminal olefins using PdCl2/CrO3 system mimicking the Wacker process. Tetrahedron, 2014, 70, 4760-4767.	1.9	26
22	Pd-Catalyzed Site-Selective Mono-allylic Substitution and Bis-arylation by Directed Allylic C–H Activation: Synthesis of <i>anti</i> -1³-(Aryl,Styryl)-1²-hydroxy Acids and Highly Substituted Tetrahydrofurans. Journal of the American Chemical Society, 2016, 138, 13238-13245.	13.7	26
23	Enantioselective allylation of imines catalyzed by newly developed (â^')-β-pinene-based Ï€-allylpalladium catalyst: an efficient synthesis of (R)-α-propylpiperonylamine and (R)-pipecolic acid. Organic and Biomolecular Chemistry, 2012, 10, 7789.	2.8	25
24	Dimeric Pyranonaphthoquinones: Isolation, Bioactivity, and Synthetic Approaches. European Journal of Organic Chemistry, 2016, 2016, 5778-5798.	2.4	24
25	A concise protecting-group-free synthesis of cephalosporolides E and F. RSC Advances, 2015, 5, 42131-42134.	3.6	23
26	A Concise Asymmetric Synthesis of (–)â€Hongconin and (–)â€1â€≺i>epiâ€Hongconin. European Journal o Organic Chemistry, 2010, 2010, 4306-4311.	of 2.4	22
27	Total Synthesis of Both Spiroketal Diastereomers of the Reported Structure of Cephalosporolideâ€H. Asian Journal of Organic Chemistry, 2013, 2, 593-599.	2.7	22
28	A protecting-group-free synthesis of (+)-nephrosteranic, (+)-protolichesterinic, (+)-nephrosterinic, (+)-phaseolinic, (+)-rocellaric acids and (+)-methylenolactocin. Organic and Biomolecular Chemistry, 2017, 15, 708-716.	2.8	22
29	Room temperature nickel-catalyzed cross-coupling of aryl-boronic acids with thiophenols: synthesis of diarylsulfides. Organic and Biomolecular Chemistry, 2020, 18, 2447-2458.	2.8	22
30	A concise synthesis of paraconic acids: (â^')-methylenolactocin and (â^')-phaseolinic acid. Tetrahedron: Asymmetry, 2011, 22, 1114-1119.	1.8	21
31	Ringâ€Closing Metathesis Enabled Efficient Synthesis of <i>γ</i> â€Butenolide Antifungal Agent (â~)â€Incrustoporin and its Analogues. Asian Journal of Organic Chemistry, 2014, 3, 58-62.	2.7	21
32	Domino Recombinant γâ€Isomerization and Reverse Wacker Oxidation of γâ€Vinylâ€Î³â€butyrolactone: Synthes (+)â€ <i>transâ€</i> , (–)―and (+)â€Disparlures. European Journal of Organic Chemistry, 2014, 2014, 3249-32	sis of 55:4	21
33	Advances in Cu and Ni-catalyzed Chan–Lam-type coupling: synthesis of diarylchalcogenides, Ar ₂ –X (X = S, Se, Te). Organic and Biomolecular Chemistry, 2020, 18, 9583-9600.	2.8	21
34	Chiral vicinal diols as platforms for separable diastereomers in Johnson–Claisen rearrangement: a new short route to (â^')-nor-canadensolide, (â^')-canadensolide and (â^')-sporothriolide. Tetrahedron Letters, 2009, 50, 1122-1124.	1.4	20
35	Synthetic Studies on Actinorhodin and γâ€Actinorhodin: Synthesis of Deoxyactinorhodin and Deoxyâ€Î³â€actinorhodin/Crisamicinâ€A Isomer. Chemistry - A European Journal, 2015, 21, 4842-4852.	3.3	20
36	A Cascade Aza ope/Azaâ€Prins Cyclization Leading to Piperidine Derivatives. European Journal of Organic Chemistry, 2015, 2015, 2012-2022.	2.4	20

#	Article	IF	CITATIONS
37	Synthesis of β,γ-disubstituted-γ-lactones through a Johnson–Claisen rearrangement: a short route to xylobovide, nor-canadensolide, canadensolide, sporothriolide and santolinolide. Tetrahedron: Asymmetry, 2009, 20, 2835-2844.	1.8	19
38	A Dötz benzannulation route to the enantioselective synthesis of (â^')- and (+)-juglomycin A. Tetrahedron: Asymmetry, 2011, 22, 1312-1319.	1.8	19
39	Development of the First Menthaneâ€Based Chiral Bis(Ï€â€allylpalladium) Catalysis: Asymmetric Allylation of Imines. European Journal of Organic Chemistry, 2012, 2012, 1945-1952.	2.4	19
40	Development of Unimolecular Tetrakis(piperidinâ€4â€ol) as a Ligand for Suzuki–Miyaura Crossâ€Coupling Reactions: Synthesis of Incrustoporin and Preclamol. European Journal of Organic Chemistry, 2015, 2015, 3558-3567.	2.4	19
41	Advances in Total Synthesis of Some 2,3,5â€Trisubstituted Tetrahydrofuran Natural Products. Chemistry - an Asian Journal, 2020, 15, 2815-2837.	3.3	19
42	Dimeric Fischer Carbenes: A Bidirectional Dötz Benzannulation and oxa-Pictet-Spengler Strategy for the Synthesis of the Regioisomeric Core of Cardinalin 3. Synlett, 2010, 2010, 2667-2671.	1.8	18
43	A concise and improved synthesis of (+)-eleutherin, (+)-allo-eleutherin and a formal synthesis of (+)-nocardione B. Tetrahedron: Asymmetry, 2011, 22, 487-492.	1.8	18
44	Synthetic studies on C14 cembranoids: synthesis of C4–12 fragment of sarcophytonolides E–G and L and C5–11 fragment of sarcophytonolide L. Tetrahedron Letters, 2011, 52, 458-460.	1.4	18
45	A concise total synthesis of arizonins B1 and C1. Tetrahedron: Asymmetry, 2013, 24, 1548-1555.	1.8	18
46	An expedient osmium(vi)/K3Fe(CN)6-mediated selective oxidation of benzylic, allylic and propargylic alcohols. RSC Advances, 2014, 4, 40561-40568.	3.6	18
47	An Efficient Synthesis of (–)â€Posticlure: The Sex Pheromone of <i>Orgyia postica</i> . European Journal of Organic Chemistry, 2007, 2007, 5064-5070.	2.4	17
48	A diethyltartrate-based synthesis of both (â^')- and (+)-arundic acid. Tetrahedron Letters, 2009, 50, 5903-5905.	1.4	16
49	A relay ring-opening/double ring-closing metathesis strategy for the bicyclic macrolide-butenolide core structures. RSC Advances, 2014, 4, 63342-63348.	3.6	16
50	Stereoselective inversion of Î ³ -vinyl-Î ³ -butyrolactone under palladium catalysis: application to the synthesis of (+)-exo- and (+)-endo-brevicomins. RSC Advances, 2014, 4, 14507.	3.6	16
51	Synthetic Studies toward Actinorhodin and γâ€Actinorhodin by using a Homoâ€coupling Strategy: Synthesis of Hemiactinorhodin and Hemiâ€Î³â€actinorhodin. European Journal of Organic Chemistry, 2015, 2015, 4931-4938.	2.4	16
52	De novo protecting-group-free total synthesis of (+)-muricadienin, (+)-ancepsenolide and (+)-3-hexadecyl-5-methylfuran-2(5H)-one. Organic and Biomolecular Chemistry, 2016, 14, 9072-9079.	2.8	16
53	Total Synthesis of the Sensitive Triyne Natural Product (4 <i>S</i> ,5 <i>S</i>)-4,8-Dihydroxy-3,4-dihydrovernoniyne and All of Its Stereoisomers. Organic Letters, 2019, 21, 5827-5831.	4.6	16
54	Metal-Free BrÃ,nsted Acid-Catalyzed Rearrangement of δ-Hydroxyalkynones to 2,3-Dihydro-4 <i>H</i> -pyran-4-ones: Total Synthesis of Obolactone and a Catechol Pyran Isolated from <i>Plectranthus sylvestris</i> . Journal of Organic Chemistry, 2019, 84, 3537-3551.	3.2	16

#	Article	IF	CITATIONS
55	A Decade with Dötz Benzannulation in the Synthesis of Natural Products. Synlett, 2020, 31, 403-420.	1.8	16
56	Stereoselective synthesis of (â^')-1-epi-ventiloquinone L and (+)-ventiloquinone L, the monomeric unit of cardinalin 3. Organic and Biomolecular Chemistry, 2012, 10, 4462.	2.8	15
57	Unimolecular 4â€Hydroxypiperidines: New Ligands for Copperâ€Catalyzed Nâ€Arylation. Asian Journal of Organic Chemistry, 2015, 4, 552-559.	2.7	15
58	Traceless OH-Directed Wacker Oxidation-Elimination, an Alternative to Wittig Olefination/Aldol Condensation: One-Pot Synthesis of <i>ĺ±</i> , <i>ĺ²</i> -Unsaturated and Nonconjugated Ketones from Homoallyl Alcohols. Journal of Organic Chemistry, 2016, 81, 8577-8584.	3.2	15
59	Diastereoselective synthesis of (+)-nephrosterinic acid and (+)-protolichesterinic acid. Tetrahedron: Asymmetry, 2012, 23, 60-66.	1.8	14
60	Iron(III)/O ₂ -Mediated Regioselective Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Organic Letters, 2019, 21, 9203-9207.	4.6	14
61	A practical and improved process for the synthesis of Hagen's gland lactones by catalytic hydro-deiodination. Tetrahedron: Asymmetry, 2014, 25, 1022-1025.	1.8	13
62	Total Synthesis of Marine Natural Products: Cephalosporolides. Asian Journal of Organic Chemistry, 2016, 5, 839-854.	2.7	13
63	Synthesis of 5-Vinyl-2-isoxazolines by Palladium-Catalyzed Intramolecular <i>O</i> -Allylation of Ketoximes. Organic Letters, 2021, 23, 6227-6231.	4.6	13
64	A facile chemoselective deprotection of aryl silyl ethers using sodium hydride/DMF and in situ protection of phenol with various groups. RSC Advances, 2014, 4, 16438-16443.	3.6	12
65	A concise synthesis of (4R,5R)-(â^')-muricatacin and (4R,5R)-l-(â^')-factor from d-glucono-Î-lactone. Tetrahedron: Asymmetry, 2016, 27, 114-117.	1.8	12
66	Arundic Acid a Potential Neuroprotective Agent: Biological Development and Syntheses. Current Medicinal Chemistry, 2013, 20, 2315-2329.	2.4	12
67	First Synthesis of the Pyrano-Naphthoquinone Lactone (-)-Arizonin C1. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	2.4	11
68	Protecting-Group-Free Total Synthesis of Chatenaytrienin-2. Journal of Organic Chemistry, 2019, 84, 12216-12220.	3.2	11
69	The Potential of βâ€Hydroxyâ€Î³â€vinylâ€Î³â€lactone in the Synthesis of Natural Products and Beyond. European Journal of Organic Chemistry, 2020, 2020, 634-645.	2.4	11
70	Advances in catalytic and protecting-group-free total synthesis of natural products: a recent update. Chemical Communications, 2020, 56, 8569-8590.	4.1	11
71	A Synthesis of (–)â€(<i>R</i>)―and (+)â€(<i>S</i>)‣avandulol, (+)â€Lavandulyl 2â€Methylbutanoate, and (+)â€Lavandulyl Senecioate through OrthoÂester Johnson–Claisen Rearrangement. European Journal of Organic Chemistry, 2013, 2013, 5165-5170.	2.4	10
72	Emergence of 2,3,5-trisubstituted tetrahydrofuran natural products and their synthesis. Organic and Biomolecular Chemistry, 2020, 18, 7002-7025.	2.8	10

#	Article	IF	CITATIONS
73	Total synthesis of (8S,11R,12R)- and (8R,11R,12R)-topsentolide B2 diastereomers and assignment of the absolute configuration. Tetrahedron: Asymmetry, 2011, 22, 1930-1935.	1.8	9
74	A Concise Stereoselective Synthesis of the Tetracyclic Naphthoquinone (–)â€Isagarin. European Journal of Organic Chemistry, 2011, 2011, 6624-6627.	2.4	9
75	A highly diastereoselective oxa-Pictet-Spengler approach to (+)-astropaquinone B and (+)-astropaquinone C and the formation of astropaquinone B dimer. Tetrahedron: Asymmetry, 2013, 24, 1281-1285.	1.8	9
76	Chiral Cups (Calixarenes) via Dötz Benzannulation. Synthesis, 2014, 46, 1836-1846.	2.3	9
77	Evolution of Strategies in Paraconic Acids Synthesis. Asian Journal of Organic Chemistry, 2020, 9, 1478-1501.	2.7	9
78	A stereoselective synthesis of the reported structure of polyporolide. RSC Advances, 2015, 5, 49189-49194.	3.6	8
79	Unimolecular tetrakis-piperidine-4-ol: an efficient ligand for copper and amine free Sonogashira coupling. RSC Advances, 2015, 5, 54037-54045.	3.6	8
80	A Catalytic Asymmetric Protecting-Group-Free Total Synthesis of (4 <i>S</i> ,5 <i>S</i>)-4,8-Dihydroxy-3,4-dihydrovernoniyne and Its Enantiomer. Journal of Organic Chemistry, 2019, 84, 14127-14132.	3.2	8
81	Tandem IBXâ€Promoted Primary Alcohol Oxidation/Opening of Intermediate β,γâ€Diolcarbonate Aldehydes to (E)â€Î³â€Hydroxyâ€Î±,βâ€enals. Chemistry - an Asian Journal, 2019, 14, 2278-2290.	3.3	8
82	Regioselective Disulfide-Catalyzed Photocatalytic Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Organic Letters, 2022, 24, 3435-3439.	4.6	8
83	Total synthesis of topsentolide B2. Tetrahedron Letters, 2011, 52, 1788-1790.	1.4	7
84	Control of Diastereoselectivity in Orthoester Johnson–Claisen Rearrangement of Tartrateâ€Based Allyl Alcohol: An Efficient Synthesis of Arundic Acid, a Potential Therapeutic Agent for Alzheimer's Disease. European Journal of Organic Chemistry, 2012, 2012, 1047-1055.	2.4	7
85	Evolution of Strategies in Protectingâ€Groupâ€Free Synthesis of Natural Products: A Recent Update. European Journal of Organic Chemistry, 2021, 2021, 711-740.	2.4	7
86	Lewis acid-catalyzed annulative partial dimerization of 3-aryloxyacrylates to 4-arylchroman-2-ones: synthesis of analogues of tolterodine, RORÎ ³ inhibitors and a GPR40 agonist. Chemical Communications, 2019, 55, 2313-2316.	4.1	6
87	MnO ₂ as a terminal oxidant in Wacker oxidation of homoallyl alcohols and terminal olefins. Organic and Biomolecular Chemistry, 2020, 18, 6115-6125.	2.8	6
88	Muricatacin, a Gateway Molecule to Higher Acetogenin Synthesis. Chemistry - an Asian Journal, 2020, 15, 3660-3681.	3.3	6
89	Lateâ€Stage βâ€Epimerization. A Stereodivergent to Stereoconvergent Relay to the First Total Synthesis of (+)â€Murolic Acid. European Journal of Organic Chemistry, 2014, 2014, 237-243.	2.4	5
90	A Stepâ€Economic Synthesis of (S)â€{â^)â€Juglomycin C and (S)â€{â^)â€NHAB by Dötz Benzannulation and Convergent Deprotections. Asian Journal of Organic Chemistry, 2019, 8, 1534-1538.	2.7	5

#	Article	IF	CITATIONS
91	Menthaneâ€Based Chlorideâ€Bridged η ³ â€Bisâ€Ï€â€AllyIpalladium Chloride Dimers: Catalytic Asymmetric Allylation of Imines. European Journal of Organic Chemistry, 2019, 2019, 2857-2863.	2.4	5
92	Concise Stereoselective Synthesis of β-Hydroxy-γ-lactones: (4 <i>R</i> ,5 <i>R</i>)-4-Hydroxy-γ-decalactone from the Japanese Orange Fly and Enantiomers of Arachnid Harvestmen Isolates. Journal of Natural Products, 2021, 84, 120-125.	3.0	5
93	Catalytic δ-hydroxyalkynone rearrangement in the stereoselective total synthesis of centrolobine, engelheptanoxides A and C and analogues. Tetrahedron, 2021, 96, 132375.	1.9	5
94	Formal Synthesis of the Human Rhinovirus 3 C Protease Inhibitor (â^')â€Thysanone. Asian Journal of Organic Chemistry, 2015, 4, 560-566.	2.7	4
95	A Concise Synthesis of (â^')-Incrustoporin and its Analogues by Pd-catalyzed Suzuki-Miyaura Coupling from <i>γ</i> -Vinyl- <i>γ</i> -butyrolactone. ChemistrySelect, 2016, 1, 5137-5140.	1.5	4
96	Total synthesis of unique anti,anti-4-hydroxy-5-(1-hydroxyalkyl)-Î ³ -lactones, polyporolide and mupirocin H. Tetrahedron Letters, 2016, 57, 3694-3700.	1.4	4
97	Evolution of Total Syntheses of βâ€Hydroxyâ€Î³â€Łactones: Cardiobutanolide and Hagen's Gland Lactones. ChemistrySelect, 2017, 2, 6503-6518.	1.5	4
98	A Concise Stereoselective Synthesis of Naturally Occurring d―Xylo 18 â€Guggultetrol and its C2â€Epimer. Asian Journal of Organic Chemistry, 2019, 8, 532-536.	2.7	4
99	A Decade of Muricatacin Synthesis and Beyond. European Journal of Organic Chemistry, 2020, 2020, 6845-6858.	2.4	4
100	Fischer Carbene Pentannulation with Alkynes Having Adjacent Carbonate or Acyloxy Groups: Synthesis of 3-Substituted 1-Indanones. Organic Letters, 2020, 22, 3438-3443.	4.6	4
101	Palladium-catalyzed anti-Markovnikov oxidative acetalization of activated olefins with iron(<scp>iii</scp>) sulphate as the reoxidant. Organic and Biomolecular Chemistry, 2022, 20, 427-443.	2.8	4
102	Three decades of disparlure and analogue synthesis. New Journal of Chemistry, 2020, 44, 17616-17636.	2.8	3
103	Metal-free annulative hydrosulfonation of propiolate esters: synthesis of 4-sulfonates of coumarins and butenolides. New Journal of Chemistry, 2020, 44, 3970-3984.	2.8	3
104	Tandem Benzylic Oxidation/Dihydroxylation of <i>α</i> â€Vinyl―and <i>α</i> â€Alkenylbenzyl Alcohols. Helvetica Chimica Acta, 2015, 98, 92-107.	1.6	2
105	Short eight-steps total synthesis of racemic asteriscunolide C. Synthetic Communications, 2017, 47, 2103-2108.	2.1	2
106	A Lewisâ€Acidâ€Catalyzed Phenolic Ether â€`O to C' Rearrangement: Synthesis of 4â€Aryldihydrocoumarins. Asian Journal of Organic Chemistry, 2019, 8, 1001-1009.	2.7	2
107	A Chiron Approach to the Stereoselective Total Synthesis of Phomonol and Phytotoxic Nonenolides. European Journal of Organic Chemistry, 2020, 2020, 6909-6914.	2.4	2
108	Stereoselective total synthesis of obolactones and 7′,8′-dihydroobolactones. New Journal of Chemistry, 2021, 45, 18976-18982.	2.8	2

#	Article	IF	CITATIONS
109	A Concise Synthesis of the Key Tetrahydrofuran Moieties of Caruifolin A and EBCâ€342. European Journal of Organic Chemistry, 2020, 2020, 6922-6928.	2.4	1
110	Synthetic modifications of bifunctional homoallylamines: Synthesis of 2-arylpiperidines, (<i>R</i>)-anatabine and (<i>R</i>)-anabasine. Synthetic Communications, 0, , 1-8.	2.1	0
111	Asymmetric Synthesis of Catechol Pyran Isolated from <i>Plectranthus sylvestris</i> by δâ€Hydroxyalkynone Rearrangement. ChemistrySelect, 2020, 5, 13160-13162.	1.5	0
112	(â^')â€Î²â€Pineneâ€based Ï€â€Allylpalladium Complexâ€Catalyzed Asymmetric Allylation of Bisâ€Imines. Chemist 2020, 5, 8301-8304.	rySelect, 1.5	0
113	BX3-Mediated Intermolecular Formation of Functionalized 3-Halo-1H-indenes via Cascade Halo-Nazarov-Type Cyclization. Synthesis, 2020, 52, 2245-2258.	2.3	0
114	Allyl-Palladium Complexes in Organic Synthesis. , 2021, , .		0
115	C(sp)-C(sp3)-Sonogashira Coupling Enabled Total Synthesis of Chatenaytrienins-1, -3 and -4 and Muridienins-1-4. Synthesis, 0, 0, .	2.3	0