Stuart K Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862695/publications.pdf

Version: 2024-02-01

47 2,683 23 47 papers citations h-index g-index

52 52 52 5641 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources. Journal of Shoulder and Elbow Surgery, 2021, 30, 520-531.	2.6	13
2	Identification of Three Loci Associated with Achilles Tendon Injury Risk from a Genome-wide Association Study. Medicine and Science in Sports and Exercise, 2021, 53, 1748-1755.	0.4	2
3	Career Retrospective: Tom Johnson—Genetics, Genomics, Stress, Stochastic Variation, and Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, e85-e91.	3. 6	O
4	Association of COA1 with Patellar Tendonitis: A Genome-wide Association Analysis. Medicine and Science in Sports and Exercise, 2021, 53, 2419-2424.	0.4	3
5	Three genes associated with anterior and posterior cruciate ligament injury. Bone & Joint Open, 2021, 2, 414-421.	2.6	5
6	A genome-wide association study for shoulder impingement and rotator cuff disease. Journal of Shoulder and Elbow Surgery, 2021, 30, 2134-2145.	2.6	10
7	A Genome-wide Association Study for Concussion Risk. Medicine and Science in Sports and Exercise, 2021, 53, 704-711.	0.4	9
8	Maximum reproductive lifespan correlates with CD33rSIGLEC gene number: Implications for NADPH oxidaseâ€derived reactive oxygen species in aging. FASEB Journal, 2020, 34, 1928-1938.	0.5	11
9	Integrative Genomics Analysis Unravels Tissue-Specific Pathways, Networks, and Key Regulators of Blood Pressure Regulation. Frontiers in Cardiovascular Medicine, 2019, 6, 21.	2.4	15
10	Two Genetic Variants Associated with Plantar Fascial Disorders. International Journal of Sports Medicine, 2018, 39, 314-321.	1.7	16
11	Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE, 2018, 13, e0200785.	2.5	137
12	Two Genetic Loci associated with Medial Collateral Ligament Injury. International Journal of Sports Medicine, 2017, 38, 501-507.	1.7	8
13	Genome-wide association study identifies a locus associated with rotator cuff injury. PLoS ONE, 2017, 12, e0189317.	2.5	25
14	Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS ONE, 2017, 12, e0170422.	2.5	46
15	Two genetic loci associated with ankle injury. PLoS ONE, 2017, 12, e0185355.	2.5	13
16	Deactivation of the GATA Transcription Factor ELT-2 Is a Major Driver of Normal Aging in C. elegans. PLoS Genetics, 2016, 12, e1005956.	3.5	57
17	An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the C.Âelegans Germline. Cell, 2016, 166, 343-357.	28.9	92
18	New insights into old worm proteomes. Worm, 2016, 5, e1184391.	1.0	0

#	Article	IF	CITATIONS
19	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	21.4	362
20	Dietary and microbiome factors determine longevity in Caenorhabditis elegans. Aging, 2016, 8, 1513-1539.	3.1	18
21	Reproductive Aging Drives Protein Accumulation in the Uterus and Limits Lifespan in C. elegans. PLoS Genetics, 2015, 11, e1005725.	3.5	25
22	Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity. PLoS Genetics, 2015, 11, e1005728.	3.5	128
23	The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genetics, 2015, 11, e1005734.	3 . 5	75
24	Optimal multiple testing under a Gaussian prior on the effect sizes. Biometrika, 2015, 102, 753-766.	2.4	17
25	Applying Personal Genetic Data to Injury Risk Assessment in Athletes. PLoS ONE, 2015, 10, e0122676.	2.5	19
26	Whole-Genome Sequencing of the World's Oldest People. PLoS ONE, 2014, 9, e112430.	2.5	57
27	The <scp>GATA</scp> transcription factor/ <scp>MTA</scp> â€1 homolog <i>egrâ€1 </i> promotes longevity and stress resistance in <i><scp>C</scp>aenorhabditis elegans</i> Aging Cell, 2014, 13, 329-339.	6.7	11
28	Reconciliation of daf-2 suppression by elt-3 in Caenorhabditis elegans from and. Mechanisms of Ageing and Development, 2013, 134, 64-65.	4.6	3
29	Roles of the Developmental Regulator unc-62/Homothorax in Limiting Longevity in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003325.	3 . 5	38
30	An Engineering Approach to Extending Lifespan in C. elegans. PLoS Genetics, 2012, 8, e1002780.	3.5	38
31	The GATA Transcription Factor egl-27 Delays Aging by Promoting Stress Resistance in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1003108.	3.5	26
32	Response to Tonsaker et al Mechanisms of Ageing and Development, 2012, 133, 54-56.	4.6	4
33	Interpretome: a freely available, modular, and secure personal genome interpretation engine. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2012, , 339-350.	0.7	12
34	Seeing elegance in gene regulatory networks of the worm. Current Opinion in Genetics and Development, 2011, 21, 776-786.	3.3	16
35	Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1002047.	3.5	83
36	Aging Mice Show a Decreasing Correlation of Gene Expression within Genetic Modules. PLoS Genetics, 2009, 5, e1000776.	3.5	157

#	Article	IF	CITATIONS
37	Proteins That Promote Long Life. Science, 2007, 317, 603-604.	12.6	19
38	Common aging pathways in worms, flies, mice and humans. Journal of Experimental Biology, 2007, 210, 1607-1612.	1.7	86
39	AGEMAP: a gene expression database for aging in mice. PLoS Genetics, 2005, preprint, e201.	3.5	3
40	http://C.Elegans: Mining the functional genomic landscape. Nature Reviews Genetics, 2001, 2, 681-689.	16.3	24
41	Cell polarity: new PARtners for Cdc42 and Rac. Nature Cell Biology, 2000, 2, E143-E144.	10.3	39
42	"Fluorescent Timer": Protein That Changes Color with Time. Science, 2000, 290, 1585-1588.	12.6	347
43	Protruding Vulva Mutants Identify Novel Loci and Wnt Signaling Factors That Function During <i>Caenorhabditis elegans</i> Vulva Development. Genetics, 2000, 156, 1097-1116.	2.9	112
44	Developmental biology in the post-genome era: worms and chips. Nature Genetics, 1999, 23, 13-13.	21.4	1
45	unc-45 gene ofCaenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein. Cytoskeleton, 1999, 42, 163-177.	4.4	54
46	Genetic Analysis of the Caenorhabditis elegans MAP Kinase Gene mpk-1. Genetics, 1998, 150, 103-117.	2.9	106
47	Mosaic Analysis Using a <i>ncl-1</i> (+) Extrachromosomal Array Reveals That <i>lin-31</i> Acts in the Pn.p Cells During <i>Caenorhabditis elegans</i> Vulval Development. Genetics, 1996, 143, 1181-1191.	2.9	37