Carlos Rinaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862232/publications.pdf

Version: 2024-02-01

53794 69250 7,201 171 45 77 citations h-index g-index papers 173 173 173 9085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Particle motion artifacts in equilibrium magnetization measurements of large iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2022, 547, 168889.	2.3	2
2	An anatomically correct <scp>3D</scp> â€printed mouse phantom for magnetic particle imaging studies. Bioengineering and Translational Medicine, 2022, 7, .	7.1	3
3	Tracking adoptive T cell immunotherapy using magnetic particle imaging. Nanotheranostics, 2021, 5, 431-444.	5.2	55
4	Long circulating tracer tailored for magnetic particle imaging. Nanotheranostics, 2021, 5, 348-361.	5.2	40
5	Fast nanoparticle rotational and translational diffusion in synovial fluid and hyaluronic acid solutions. Science Advances, 2021, 7, .	10.3	18
6	Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 163-185.	6.8	24
7	Spatially-resolved nanometer-scale measurement of cartilage extracellular matrix mobility. Osteoarthritis and Cartilage, 2021, 29, 1351-1361.	1.3	3
8	Superferromagnetic Nanoparticles Enable Orderâ€ofâ€Magnitude Resolution & amp; Sensitivity Gain in Magnetic Particle Imaging. Small Methods, 2021, 5, e2100796.	8.6	52
9	Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Science Advances, 2021, 7, .	10.3	54
10	Electro-infiltrated nickel/iron-oxide and permalloy/iron-oxide nanocomposites for integrated power inductors. Journal of Magnetism and Magnetic Materials, 2020, 493, 165718.	2.3	10
11	Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. Journal of Neural Engineering, 2020, 17, 016057.	3.5	32
12	Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation. Journal of Colloid and Interface Science, 2020, 564, 204-215.	9.4	26
13	Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels. Journal of Colloid and Interface Science, 2020, 561, 647-658.	9.4	20
14	Magnetic nanoparticles. , 2020, , 195-221.		12
15	Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles. Physics in Medicine and Biology, 2020, 65, 025014.	3.0	20
16	Effect of sodium alginate and different types of oil on the physical properties of ultrasound-assisted nanoemulsions. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107942.	3.6	20
17	Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains. Physics in Medicine and Biology, 2020, 65, 185013.	3.0	15
18	Exosomes released by breast cancer cells under mild hyperthermic stress possess immunogenic potential and modulate polarization <i>inÂvitro</i> in macrophages. International Journal of Hyperthermia, 2020, 37, 696-710.	2.5	20

#	Article	IF	Citations
19	Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics, 2020, 10, 2965-2981.	10.0	115
20	Magnetic particle imaging performance of liposomes encapsulating iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 504, 166675.	2.3	21
21	The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees. Journal of Controlled Release, 2020, 321, 259-271.	9.9	24
22	<p>In vitro Ultrasonic Potentiation of 2-Phenylethynesulfonamide/Magnetic Fluid Hyperthermia Combination Treatments for Ovarian Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 419-432.	6.7	9
23	Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. International Journal of Hyperthermia, 2020, 37, 141-154.	2.5	39
24	Theranostic nanocarriers combining high drug loading and magnetic particle imaging. International Journal of Pharmaceutics, 2019, 572, 118796.	5.2	18
25	Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Applied Polymer Materials, 2019, 1, 211-220.	4.4	47
26	Multifunctional nanoparticles for intracellular drug delivery and photoacoustic imaging of mesenchymal stem cells. Drug Delivery and Translational Research, 2019, 9, 652-666.	5.8	12
27	Image-Guided Thermal Therapy Using Magnetic Particle Imaging and Magnetic Fluid Hyperthermia. , 2019, , 265-286.		6
28	Nanoscale structural evaluation of 0-3 magnetic nanocomposites fabricated by electro-infiltration. AIP Advances, 2019, 9, .	1.3	2
29	Longitudinal evaluation of tumor microenvironment in rat focal brainstem glioma using diffusion and perfusion MRI. Journal of Magnetic Resonance Imaging, 2019, 49, 1322-1332.	3.4	2
30	Magnetic Particle Imaging-Guided Heating <i>in Vivo</i> Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano, 2018, 12, 3699-3713.	14.6	304
31	Salmonella enterica Serovar Typhimurium Alters the Extracellular Proteome of Macrophages and Leads to the Production of Proinflammatory Exosomes. Infection and Immunity, 2018, 86, .	2.2	75
32	Magnetic nanoparticles loaded with functional RNA nanoparticles. Nanoscale, 2018, 10, 17761-17770.	5.6	35
33	Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 4771-4779.	6.7	27
34	Stability and Mobility of Magnetic Nanoparticles in Biological Environments Determined from Dynamic Magnetic Susceptibility Measurements. Bioconjugate Chemistry, 2018, 29, 2793-2805.	3.6	12
35	Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release. Journal of Nanomaterials, 2018, 2018, 1-14.	2.7	1
36	Alternating current (AC) susceptibility as a particle-focused probe of coating and clustering behaviour in magnetic nanoparticle suspensions. Journal of Colloid and Interface Science, 2018, 532, 536-545.	9.4	21

3

#	Article	IF	CITATIONS
37	Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles. Physics in Medicine and Biology, 2018, 63, 175016.	3.0	8
38	Magnetization Dynamics and Energy Dissipation of Interacting Magnetic Nanoparticles in Alternating Magnetic Fields with and without a Static Bias Field. Journal of Physical Chemistry C, 2018, 122, 21018-21030.	3.1	33
39	Stroma-derived extracellular vesicles deliver tumor-suppressive miRNAs to pancreatic cancer cells. Oncotarget, 2018, 9, 5764-5777.	1.8	39
40	<i>HSP70</i> Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer. Molecular Cancer Therapeutics, 2017, 16, 966-976.	4.1	47
41	A theranostic platform for localized magnetic fluid hyperthermia and magnetic particle imaging. Proceedings of SPIE, 2017, , .	0.8	6
42	Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications. Methods in Molecular Biology, 2017, 1570, 47-71.	0.9	70
43	Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen. ACS Nano, 2017, 11, 2284-2303.	14.6	286
44	Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics. AIP Advances, 2017, 7, 056730.	1.3	8
45	Processing-size correlations in the preparation of magnetic alginate microspheres through emulsification and ionic crosslinking. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 119-127.	4.7	11
46	Brownian Dynamics Simulations of Magnetic Nanoparticles Captured in Strong Magnetic Field Gradients. Journal of Physical Chemistry C, 2017, 121, 801-810.	3.1	9
47	Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Physics in Medicine and Biology, 2017, 62, 3483-3500.	3.0	113
48	Spin-up flow in non-small magnetic fields: Numerical evaluation of the predictions of the common magnetization relaxation equations. Physics of Fluids, 2017, 29, 073102.	4.0	4
49	Rotational diffusion of magnetic nanoparticles in protein solutions. Journal of Colloid and Interface Science, 2017, 506, 393-402.	9.4	10
50	Scale-dependent rotational diffusion of nanoparticles in polymer solutions. Nanoscale, 2017, 9, 12039-12050.	5.6	17
51	In situ measurements of dispersed and continuous phase viscosities of emulsions using nanoparticles. Journal of Colloid and Interface Science, 2017, 486, 241-248.	9.4	4
52	Magnetic particle translation as a surrogate measure for synovial fluid mechanics. Journal of Biomechanics, 2017, 60, 9-14.	2.1	5
53	Nanoscale Thermal Phenomena in the Vicinity of Magnetic Nanoparticles in Alternating Magnetic Fields. Advanced Functional Materials, 2016, 26, 3933-3941.	14.9	62
54	Multifunctional nanoparticles for improving function and multimodal tracking of mesenchymal stem cells for osteoarthritis treatment. Osteoarthritis and Cartilage, 2016, 24, S462-S463.	1.3	0

#	Article	IF	CITATIONS
55	Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements. Journal of Magnetism and Magnetic Materials, 2016, 412, 223-233.	2.3	34
56	From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	10
57	Breakdown of the Stokes–Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts. Nano Letters, 2016, 16, 6767-6773.	9.1	30
58	Finite magnetic relaxation in <i>x</i> -space magnetic particle imaging: comparison of measurements and ferrohydrodynamic models. Journal Physics D: Applied Physics, 2016, 49, 305002.	2.8	9
59	Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients. Journal of Magnetism and Magnetic Materials, 2016, 419, 267-273.	2.3	44
60	Radical Departure: Thermally-Triggered Degradation of Azo-Containing Poly(\hat{l}^2 -thioester)s. ACS Macro Letters, 2016, 5, 688-693.	4.8	32
61	Determining drug release rates of hydrophobic compounds from nanocarriers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150128.	3.4	17
62	Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging. Journal of Applied Physics, 2015, 118, 173906.	2.5	13
63	Singleâ€Step Assembly of Multimodal Imaging Nanocarriers: MRI and Longâ€Wavelength Fluorescence Imaging. Advanced Healthcare Materials, 2015, 4, 1376-1385.	7.6	48
64	Spin-glass behavior of a hierarchically-organized, hybrid microporous material, based on an extended framework of octanuclear iron-oxo units. Dalton Transactions, 2015, 44, 3399-3409.	3.3	6
65	Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields. Journal of Magnetism and Magnetic Materials, 2015, 393, 46-55.	2.3	29
66	Fabrication of patterned magnetic microstructures using magnetically assembled nanoparticles. , $2015, , .$		1
67	Remotely Triggered Activation of TGF- With Magnetic Nanoparticles. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	15
68	Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates. Journal of Magnetism and Magnetic Materials, 2015, 394, 361-371.	2.3	27
69	Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3. Journal of Applied Physics, 2015, 117, .	2.5	78
70	Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism. Chemistry of Materials, 2015, 27, 6059-6066.	6.7	195
71	Flow of immiscible ferrofluids in a planar gap in a rotating magnetic field. Physics of Fluids, 2015, 27, .	4.0	2
72	Magnetic Assembly and Cross-Linking of Nanoparticles for Releasable Magnetic Microstructures. ACS Nano, 2015, 9, 10165-10172.	14.6	34

#	Article	IF	CITATIONS
73	Enhanced proteotoxic stress: one of the contributors for hyperthermic potentiation of the proteasome inhibitor bortezomib using magnetic nanoparticles. Biomaterials Science, 2015, 3, 391-400.	5.4	14
74	Assessing magnetic nanoparticle aggregation in polymer melts by dynamic magnetic susceptibility measurements. Journal of Magnetism and Magnetic Materials, 2015, 378, 64-72.	2.3	12
75	Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. International Journal of Nanomedicine, 2014, 9, 145.	6.7	44
76	Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. International Journal of Nanomedicine, 2014, 9, 2031.	6.7	16
77	Fe3O4/SiO2 Core/Shell Nanocubes: Novel Coating Approach with Tunable Silica Thickness and Enhancement in Stability and Biocompatibility. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	39
78	In Situ Evaluation of Nanoparticle–Protein Interactions by Dynamic Magnetic Susceptibility Measurements. Particle and Particle Systems Characterization, 2014, 31, 561-570.	2.3	17
79	Interfacial stress balances in structured continua and free surface flows in ferrofluids. Physics of Fluids, 2014, 26, 042101.	4.0	12
80	Preparation of magnetic polymer colloids with Brownian magnetic relaxation. Colloid and Polymer Science, 2014, 292, 1191-1198.	2.1	7
81	Flows and torques in Brownian ferrofluids subjected to rotating uniform magnetic fields in a cylindrical and annular geometry. Physics of Fluids, 2014, 26, .	4.0	28
82	On the effect of finite magnetic relaxation on the magnetic particle imaging performance of magnetic nanoparticles. Journal of Applied Physics, 2014, 115, .	2.5	21
83	Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter, 2014, 10, 8584-8602.	2.7	260
84	Brownian dynamics simulations of ellipsoidal magnetizable particle suspensions. Journal Physics D: Applied Physics, 2014, 47, 235003.	2.8	7
85	Magnetothermal repair of a PMMA/iron oxide magnetic nanocomposite. Colloid and Polymer Science, 2014, 292, 1429-1437.	2.1	21
86	Magnetic nanoparticle targeting of lysosomes: a viable method of overcoming tumor resistance?. Nanomedicine, 2014, 9, 937-939.	3.3	12
87	Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1874.	1.9	141
88	A comparison of the magnetorheology of two ferrofluids with different magnetic field-dependent chaining behavior. Rheologica Acta, 2013, 52, 719-726.	2.4	28
89	Magnetic fluid hyperthermia: Advances, challenges, and opportunity. International Journal of Hyperthermia, 2013, 29, 706-714.	2.5	220
90	Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine, 2013, 8, 1689-1707.	3.3	112

#	Article	IF	CITATIONS
91	Curing of a Bisphenol E Based Cyanate Ester Using Magnetic Nanoparticles as an Internal Heat Source through Induction Heating. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11329-11335.	8.0	20
92	Synthesis, stability, cellular uptake, and blood circulation time of carboxymethyl-inulin coated magnetic nanoparticles. Journal of Materials Chemistry B, 2013, 1, 2807.	5.8	38
93	Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields. ACS Nano, 2013, 7, 5091-5101.	14.6	224
94	Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. Journal of Magnetism and Magnetic Materials, 2013, 328, 41-52.	2.3	67
95	Thermal Energy Dissipation by SiO ₂ -Coated Plasmonic-Superparamagnetic Nanoparticles in Alternating Magnetic Fields. Chemistry of Materials, 2013, 25, 4603-4612.	6.7	18
96	All-nanoparticle concave diffraction grating fabricated by self-assembly onto magnetically-recorded templates. Optics Express, 2013, 21, 1066.	3.4	15
97	Modulation of Interparticle Interactions and Specific Absorption Rate in Magnetomicelles through Changes in the Molecular Weight of the Hydrophobic Polymer Block. Particle and Particle Systems Characterization, 2013, 30, 964-971.	2.3	4
98	Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. International Journal of Nanomedicine, 2013, 8, 1003.	6.7	43
99	Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. Journal of Applied Physics, 2012, 111, .	2.5	57
100	Ferrofluid flow in a spherical cavity under an imposed uniform rotating magnetic field: Spherical spin-up flow. Physics of Fluids, 2012, 24, .	4.0	12
101	Development and validation of a 10 kHz–1 MHz magnetic susceptometer with constant excitation fiel Journal of Applied Physics, 2012, 111, 07E349.	d _{2.5}	7
102	Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity. Journal of Applied Physics, 2012, 111, .	2.5	17
103	Enhanced rheological properties of dilute suspensions of magnetic nanoparticles in a concentrated amphiphilic surfactant solution. Soft Matter, 2012, 8, 5327.	2.7	13
104	Rheological, optical, and thermal characterization of temperature-induced transitions in liquid crystal ferrosuspensions. Journal of Applied Physics, 2012, 111, .	2.5	6
105	Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. Journal of Colloid and Interface Science, 2012, 377, 40-50.	9.4	50
106	Role of Viscosity in Influencing the Glass-Forming Ability of Organic Molecules from the Undercooled Melt State. Pharmaceutical Research, 2012, 29, 271-284.	3.5	82
107	Quantitative nanoscale viscosity measurements using magnetic nanoparticles and SQUID AC susceptibility measurements. Soft Matter, 2011, 7, 4497.	2.7	48
108	Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. International Journal of Nanomedicine, 2011, 6, 373.	6.7	83

#	Article	IF	CITATIONS
109	EGFR-Targeted Magnetic Nanoparticle Heaters Kill Cancer Cells without a Perceptible Temperature Rise. ACS Nano, 2011, 5, 7124-7129.	14.6	294
110	Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater. Environmental Pollution, 2011, 159, 3411-3415.	7.5	9
111	Absence of magnetism in Cr-doped In ₂ O ₃ : a case study of phase separation versus phase formation. Journal Physics D: Applied Physics, 2011, 44, 495002.	2.8	8
112	Ferrofluid flow in the annular gap of a multipole rotating magnetic field. Physics of Fluids, 2011, 23, .	4.0	12
113	Influence of nanoparticle surface chemistry on the thermomechanical and magnetic properties of ferromagnetic nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1163-1172.	2.1	8
114	Transient magnetoviscosity of dilute ferrofluids. Journal of Magnetism and Magnetic Materials, 2011, 323, 1319-1323.	2.3	13
115	Oscillatory shear response of dilute ferrofluids: Predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling. Physical Review E, 2011, 84, 056306.	2.1	13
116	Hyperthermia Induced by Magnetic Nanoparticles Improves the Effectiveness of the Anticancer Drug & lt; >-Diamminedichloroplatinum. Journal of Nanoscience and Nanotechnology, 2011, 11, 4153-4157.	0.9	28
117	Magneto-Electric Coupling in PbZr0.53Ti0.47O3/CoFe2O4 Layered Thin Films. Integrated Ferroelectrics, 2011, 124, 33-40.	0.7	2
118	Magnetoviscosity of dilute magnetic fluids in oscillating and rotating magnetic fields. Physics of Fluids, 2010, 22, .	4.0	20
119	Flow of ferrofluid in an annular gap in a rotating magnetic field. Physics of Fluids, 2010, 22, .	4.0	19
120	Effect of Molecular Weight, Temperature, and Additives on the Moisture Sorption Properties of Polyethylene Glycol. Journal of Pharmaceutical Sciences, 2010, 99, 154-168.	3.3	104
121	Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements. Journal of Colloid and Interface Science, 2010, 342, 540-549.	9.4	41
122	Does the magnetic field of a multipole stator winding drive flow of a ferrofluid in a cylindrical container?. Physics Procedia, 2010, 9, 152-155.	1.2	0
123	Mixing of granular materials. Part I: Effect of periodic shear. Powder Technology, 2010, 197, 9-16.	4.2	10
124	Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells. Journal of Magnetism and Magnetic Materials, 2010, 322, 2244-2250.	2.3	38
125	Investigation of temperature-dependent polarization, dielectric, and magnetization behavior of multiferroic layered nanostructure. Thin Solid Films, 2010, 519, 641-649.	1.8	15
126	Molecular dynamics simulations of rupture in lipid bilayers. Experimental Biology and Medicine, 2010, 235, 181-188.	2.4	35

#	Article	IF	CITATIONS
127	The effect of grafting method on the colloidal stability and in vitro cytotoxicity of carboxymethyl dextran coated magnetic nanoparticles. Journal of Materials Chemistry, 2010, 20, 8539.	6.7	53
128	Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. International Journal of Hyperthermia, 2010, 26, 475-484.	2.5	63
129	Effects of the Molecular Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization Kinetics of a Small Drug Molecule. Crystal Growth and Design, 2010, 10, 3585-3595.	3.0	66
130	Effect of Sample Concentration on the Determination of the Anisotropy Constant of Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2010, 46, 852-859.	2.1	33
131	A Statistical Analysis to Control the Growth of Cobalt Ferrite Nanoparticles Synthesized by the Thermodecomposition Method. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2010, 132, .	2.2	11
132	Synthesis and characterization of polymer nanocomposites containing magnetic nanoparticles. Journal of Applied Physics, 2010, 107, 09B506.	2.5	16
133	Magnetoviscosity in dilute ferrofluids from rotational Brownian dynamics simulations. Physical Review E, 2010, 82, 046310.	2.1	47
134	Monitoring gelation using magnetic nanoparticles. Soft Matter, 2010, 6, 3662.	2.7	46
135	Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. Journal of Applied Physics, 2009, 106, .	2.5	273
136	AN INVARIANT GENERAL SOLUTION FOR THE MAGNETIC FIELDS WITHIN AND SURROUNDING A SMALL SPHERICAL PARTICLE IN AN IMPOSED ARBITRARY MAGNETIC FIELD AND THE RESULTING MAGNETIC FORCE AND COUPLE. Chemical Engineering Communications, 2009, 197, 92-111.	2.6	2
137	Strain-induced artificial multiferroicity in Pb(Zr0.53Ti0.47)O3/Pb(Fe0.66W0.33)O3 layered nanostructure at ambient temperature. Journal of Materials Science, 2009, 44, 5113-5119.	3.7	22
138	Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. Journal of Materials Science, 2009, 44, 5127-5142.	3.7	62
139	Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol). Journal of Colloid and Interface Science, 2009, 329, 107-113.	9.4	121
140	Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations. Journal of Colloid and Interface Science, 2009, 331, 500-506.	9.4	23
141	Surface modification of magnetite nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2009, 321, 1397-1399.	2.3	55
142	Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields. Journal of Magnetism and Magnetic Materials, 2009, 321, 2985-2991.	2.3	30
143	Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. Journal of Magnetism and Magnetic Materials, 2009, 321, 3061-3066.	2.3	72
144	Water dispersible iron oxide nanoparticles coated with covalently linked chitosan. Journal of Materials Chemistry, 2009, 19, 6870.	6.7	96

#	Article	IF	CITATIONS
145	Magnetic and magnetorheological characterization of a polymer liquid crystal ferronematic. Journal of Applied Physics, 2009, 105, .	2.5	13
146	Fabrication of Ordered Mesoporous Silica Films with Encapsulated Iron Oxide Nanoparticles using Ferritin-Doped Block Copolymer Templates. Chemistry of Materials, 2009, 21, 2125-2129.	6.7	15
147	Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto Rico Health Sciences Journal, 2009, 28, 227-38.	0.2	59
148	Synthesis and Characterization of Linear Trinuclear Pd, Co, and Pd/Co Pyrazolate Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 4745-4755.	2.0	24
149	Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements. Physics of Fluids, 2008, 20, .	4.0	84
150	Observation of magnetoelectric coupling in glassy epitaxial PbFe0.5Nb0.5O3 thin films. Applied Physics Letters, 2008, 93, .	3.3	30
151	Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran. Journal of Materials Chemistry, 2008, 18, 3650.	6.7	60
152	Multifunctional magnetite nanoparticles coated with fluorescent thermo-responsive polymeric shells. Journal of Materials Chemistry, 2008, 18, 855.	6.7	54
153	Glasslike state in PbFe1/2Nb1/2O3 single crystal. Applied Physics Letters, 2008, 93, .	3.3	37
154	Torque and Bulk Flow of Ferrofluid in an Annular Gap Subjected to a Rotating Magnetic Field. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 412-422.	1.5	9
155	Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe3â^'xO4) nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 314, 60-67.	2.3	111
156	Low-frequency dielectric dispersion and magnetic properties of La, Gd modified Pb(Fe1/2Ta1/2)O3 multiferroics. Journal of Magnetism and Magnetic Materials, 2007, 313, 253-260.	2.3	17
157	Dielectric dispersion and magnetic properties of Ba-modified Pb(Fe1/2Nb1/2)O3. Applied Physics A: Materials Science and Processing, 2007, 89, 793-798.	2.3	20
158	Bulk Flow in Ferrofluids in a Uniform Rotating Magnetic Field. Physical Review Letters, 2006, 96, 194501.	7.8	49
159	Torque measurements on ferrofluid cylinders in rotating magnetic fields. Journal of Magnetism and Magnetic Materials, 2005, 289, 307-310.	2.3	27
160	Synthesis and magnetic behavior of nanostructured ferrites for spintronics. Microelectronics Journal, 2005, 36, 475-479.	2.0	45
161	Magnetic fluid rheology and flows. Current Opinion in Colloid and Interface Science, 2005, 10, 141-157.	7.4	174
162	Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology, 2005, 16, S618-S625.	2.6	67

#	Article	IF	CITATIONS
163	Torque Measurements in Spin-Up Flow of Ferrofluids. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 198-205.	1.5	21
164	Ferrohydrodynamic instabilities in DC magnetic fields. Journal of Visualization, 2004, 7, 8-8.	1.8	5
165	Hele-Shaw ferrohydrodynamics for simultaneous in-plane rotating and vertical DC magnetic fields. Journal of Visualization, 2004, 7, 109-109.	1.8	1
166	Deformation of ferrofluid sheets due an applied magnetic field transverse to jet flow. Journal of Visualization, 2004, 7, 175-175.	1.8	1
167	Rheology and Behavior of Magnetic Fluids in Alternating/Rotating Magnetic Fields. , 2003, , .		0
168	Ferrohydrodynamics in Time-Varying Magnetic Fields., 2002,, 155.		0
169	Body versus surface forces in continuum mechanics: Is the Maxwell stress tensor a physically objective Cauchy stress?. Physical Review E, 2002, 65, 036615.	2.1	72
170	Effects of spin viscosity on ferrofluid duct flow profiles in alternating and rotating magnetic fields. Journal of Magnetism and Magnetic Materials, 2002, 252, 172-175.	2.3	6
171	Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields. Physics of Fluids, 2002, 14, 2847-2870.	4.0	64