Calum Bain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1861157/publications.pdf

Version: 2024-02-01

218677 302126 5,070 40 26 39 h-index citations g-index papers 46 46 46 7246 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunology, 2022, 15, 223-234.	6.0	81
2	Pulmonary macrophages and SARS-Cov2 infection. International Review of Cell and Molecular Biology, 2022, 367, 1-28.	3.2	10
3	CD11c identifies microbiota and EGR2â€dependent MHCII ⁺ serous cavity macrophages with sexually dimorphic fate in mice. European Journal of Immunology, 2022, 52, 1243-1257.	2.9	8
4	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	14.5	21
5	Guardians of the epithelium: macrophages protect against toxic fungal derivatives. Mucosal Immunology, 2021, 14, 542-543.	6.0	1
6	Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nature Communications, 2021, 12, 1770.	12.8	58
7	Role of Tim4 in the regulation of ABCA1+ adipose tissue macrophages and post-prandial cholesterol levels. Nature Communications, 2021, 12, 4434.	12.8	27
8	The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease. Scientific Reports, 2021, 11, 19616.	3.3	21
9	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	11.9	23
10	Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Science Immunology, 2020, 5, .	11.9	60
11	Resolution of Inflammation and Gut Repair in IBD: Translational Steps Towards Complete Mucosal Healing. Inflammatory Bowel Diseases, 2020, 26, 1131-1143.	1.9	47
12	Editorial: Monocyte Heterogeneity and Function. Frontiers in Immunology, 2020, 11, 626725.	4.8	9
13	OTH-10â€Therapeutic interleukin 4 modulates monocyte dynamics and accelerates repair following acute liver injury. , 2019, , .		O
14	An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. Journal of Leukocyte Biology, 2018, 104, 579-586.	3.3	51
15	<i>Csf1r</i> -mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. Journal of Immunology, 2018, 200, 2209-2223.	0.8	75
16	The biology of serous cavity macrophages. Cellular Immunology, 2018, 330, 126-135.	3.0	51
17	Proinflammatory Role of Monocyte-Derived CX3CR1 ^{int} Macrophages in Helicobacter hepaticus-Induced Colitis. Infection and Immunity, 2018, 86, .	2.2	22
18	Origin, Differentiation, and Function of Intestinal Macrophages. Frontiers in Immunology, 2018, 9, 2733.	4.8	216

#	Article	IF	Citations
19	Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Frontiers in Immunology, 2018, 9, 2764.	4.8	111
20	Isolation and Identification of Murine Serous Cavity Macrophages. Methods in Molecular Biology, 2018, 1784, 51-67.	0.9	10
21	Isolation and Identification of Intestinal Myeloid Cells. Methods in Molecular Biology, 2017, 1559, 223-239.	0.9	15
22	Tissue-specific differentiation of colonic macrophages requires $TGF\hat{l}^2$ receptor-mediated signaling. Mucosal Immunology, 2017, 10, 1387-1399.	6.0	126
23	Alternative monocytes settle in for the long term. Nature Immunology, 2017, 18, 599-600.	14.5	3
24	$TGF\hat{l}^2R$ signalling controls CD103+CD11b+ dendritic cell development in the intestine. Nature Communications, 2017, 8, 620.	12.8	74
25	Sweet! Helicobacter Sugar Calms Intestinal Macrophages. Cell Host and Microbe, 2017, 22, 719-721.	11.0	0
26	Barrier-tissue macrophages: functional adaptation to environmental challenges. Nature Medicine, 2017, 23, 1258-1270.	30.7	114
27	Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications, 2016, 7, ncomms11852.	12.8	275
28	CD4+ T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunology, 2016, 9, 492-502.	6.0	39
29	CSF1 Restores Innate Immunity After Liver Injury in Mice andÂSerum Levels Indicate Outcomes of Patients With AcuteÂLiver Failure. Gastroenterology, 2015, 149, 1896-1909.e14.	1.3	156
30	Lymph-borne CD8 \hat{l} ±+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunology, 2015, 8, 38-48.	6.0	93
31	CCR2+CD103â° intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunology, 2015, 8, 327-339.	6.0	140
32	Macrophages in intestinal homeostasis and inflammation. Immunological Reviews, 2014, 260, 102-117.	6.0	466
33	Intestinal macrophages and dendritic cells: what's the difference?. Trends in Immunology, 2014, 35, 270-277.	6.8	201
34	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	14.5	921
35	The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	2.5	48
36	Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunology, 2013, 6, 498-510.	6.0	749

#	Article	IF	CITATIONS
37	<scp>CDcl>scp>64 distinguishes macrophages from dendritic cells in the gut and reveals the <scp>Tscp>h1â€inducing role of mesenteric lymph node macrophages during colitis. European Journal of Immunology, 2012, 42, 3150-3166.</scp></scp>	2.9	430
38	CD200 receptor and macrophage function in the intestine. Immunobiology, 2012, 217, 643-651.	1.9	33
39	Intestinal macrophages – specialised adaptation to a unique environment. European Journal of Immunology, 2011, 41, 2494-2498.	2.9	93
40	An Independent Subset of TLR Expressing CCR2-Dependent Macrophages Promotes Colonic Inflammation. Journal of Immunology, 2010, 184, 6843-6854.	0.8	180