
Mitch McVey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1860564/publications.pdf Version: 2024-02-01

MITCH MCVEY

#	Article	IF	CITATIONS
1	Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes, 2022, 13, 474.	2.4	5
2	Characterization of sequence contexts that favor alternative end joining at Cas9-induced double-strand breaks. Nucleic Acids Research, 2022, 50, 7465-7478.	14.5	5
3	Background DNA damage is higher in summer than winter in both freeâ€living and captive birds. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2022, 337, 789-794.	1.9	1
4	Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells, 2020, 9, 1657.	4.1	36
5	Using Poetry in the Undergraduate Biology Classroom. American Biology Teacher, 2020, 82, 416-420.	0.2	6
6	Beyond corticosterone: The acute stress response increases DNA damage in house sparrows. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 595-606.	1.9	9
7	Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Scientific Reports, 2020, 10, 4512.	3.3	7
8	The DNA polymerases of <i>Drosophila melanogaster</i> . Fly, 2020, 14, 49-61.	1.7	6
9	Evidence for premature aging in a Drosophila model of Werner syndrome. Experimental Gerontology, 2019, 127, 110733.	2.8	7
10	The <i>Drosophila melanogaster</i> PIF1 Helicase Promotes Survival During Replication Stress and Processive DNA Synthesis During Double-Strand Gap Repair. Genetics, 2019, 213, 835-847.	2.9	13
11	DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 227, 116-122.	1.8	35
12	Recovery of Alternative End-Joining Repair Products From Drosophila Embryos. Methods in Enzymology, 2018, 601, 91-110.	1.0	2
13	Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLoS Genetics, 2017, 13, e1006813.	3.5	44
14	Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. Nucleic Acids Research, 2017, 45, 12848-12861.	14.5	30
15	Rapid Detection of γ-H2Av Foci in Ex Vivo MMS-Treated Drosophila Imaginal Discs. Methods in Molecular Biology, 2017, 1644, 203-211.	0.9	2
16	Linking DNA polymerase theta structure and function in health and disease. Cellular and Molecular Life Sciences, 2016, 73, 603-615.	5.4	38
17	Eukaryotic DNA Polymerases in Homologous Recombination. Annual Review of Genetics, 2016, 50, 393-421.	7.6	121
18	Multiple mechanisms contribute to double-strand break repair at rereplication forks in <i>Drosophila</i> follicle cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13809-13814.	7.1	30

Мітсн МсVеу

#	Article	IF	CITATIONS
19	Errorâ€Prone Repair of DNA Double‣trand Breaks. Journal of Cellular Physiology, 2016, 231, 15-24.	4.1	284
20	Characteristics of de novo structural changes in the human genome. Genome Research, 2015, 25, 792-801.	5.5	115
21	RPA puts the brakes on MMEJ. Nature Structural and Molecular Biology, 2014, 21, 348-349.	8.2	11
22	The <i>Drosophila</i> Werner Exonuclease Participates in an Exonuclease-Independent Response to Replication Stress. Genetics, 2014, 197, 643-652.	2.9	15
23	Common Variants of <i>Drosophila melanogaster</i> Cyp6d2 Cause Camptothecin Sensitivity and Synergize With Loss of Brca2. G3: Genes, Genomes, Genetics, 2013, 3, 91-99.	1.8	17
24	Competition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila. PLoS Genetics, 2012, 8, e1002659.	3.5	52
25	Loss of the bloom syndrome helicase increases DNA ligase 4-independent genome rearrangements and tumorigenesis in aging Drosophila. Genome Biology, 2011, 12, R121.	9.6	24
26	Strategies for DNA interstrand crosslink repair: Insights from worms, flies, frogs, and slime molds. Environmental and Molecular Mutagenesis, 2010, 51, 646-658.	2.2	41
27	Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Research, 2010, 38, 5706-5717.	14.5	171
28	Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila. PLoS Genetics, 2010, 6, e1001005.	3.5	203
29	Super-sized deletions: Improved transposon excision screens using a mus309 mutant background. Fly, 2010, 4, 137-140.	1.7	4
30	Removal of the Bloom Syndrome DNA Helicase Extends the Utility of Imprecise Transposon Excision for Making Null Mutations in Drosophila. Genetics, 2009, 183, 1187-1193.	2.9	17
31	In Vivo Analysis of Drosophila BLM Helicase Function During DNA Double-Strand Gap Repair. Methods in Molecular Biology, 2009, 587, 185-194.	0.9	8
32	MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends in Genetics, 2008, 24, 529-538.	6.7	841
33	Multiple Functions of Drosophila BLM Helicase in Maintenance of Genome Stability. Genetics, 2007, 176, 1979-1992.	2.9	84
34	A case-based approach increases student learning outcomes and comprehension of cellular respiration concepts. Biochemistry and Molecular Biology Education, 2007, 35, 181-186.	1.2	46
35	Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15694-15699.	7.1	83
36	Evidence for Multiple Cycles of Strand Invasion During Repair of Double-Strand Gaps in Drosophila. Genetics, 2004, 167, 699-705.	2.9	97

Мітсн МсVеу

#	Article	lF	CITATIONS
37	End-Joining Repair of Double-Strand Breaks in Drosophila melanogaster Is Largely DNA Ligase IV Independent. Genetics, 2004, 168, 2067-2076.	2.9	81
38	<i>Drosophila</i> BLM in Double-Strand Break Repair by Synthesis-Dependent Strand Annealing. Science, 2003, 299, 265-267.	12.6	241
39	Separation of mother and daughter cells. Methods in Enzymology, 2002, 351, 468-477.	1.0	47
40	AGEID: a database of aging genes and interventions. Mechanisms of Ageing and Development, 2002, 123, 1115-1119.	4.6	34
41	The Short Life Span of <i>Saccharomyces cerevisiae sgs1</i> and <i>srs2</i> Mutants Is a Composite of Normal Aging Processes and Mitotic Arrest Due to Defective Recombination. Genetics, 2001, 157, 1531-1542.	2.9	96
42	Using Yeast to Discover the Fountain of Youth. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 1pe-1.	0.8	25
43	Beer and Aging. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 5vp-5.	0.8	0
44	Two Classes of <i>sir3</i> Mutants Enhance the <i>sir1</i> Mutant Mating Defect and Abolish Telomeric Silencing in <i>Saccharomyces cerevisiae</i> . Genetics, 2000, 155, 509-522.	2.9	44