Jian Zhi Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1858947/publications.pdf

Version: 2024-02-01

		34016	3	34900
194	11,216	52		98
papers	citations	h-index		g-index
199	199	199		12528
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry. Jacs Au, 2022, 2, 917-932.	3.6	5
2	The superior hydrothermal stability of Pd/SSZ-39 in low temperature passive NOx adsorption (PNA) and methane combustion. Applied Catalysis B: Environmental, 2021, 280, 119449.	10.8	56
3	High-Field One-Dimensional and Two-Dimensional ²⁷ Al Magic-Angle Spinning Nuclear Magnetic Resonance Study of Î,-, Î-, and γ-Al ₂ O ₃ Dominated Aluminum Oxides: Toward Understanding the Al Sites in γ-Al ₂ O ₃ . ACS Omega, 2021, 6, 4090-4099.	1.6	29
4	Conversion of ethanol to 1,3–butadiene over Ag–ZrO2/SiO2 catalysts: The role of surface interfaces. Journal of Energy Chemistry, 2021, 54, 7-15.	7.1	21
5	Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents. Journal of Physical Chemistry C, 2021, 125, 6005-6012.	1.5	17
6	Low-temperature (< 200°C) degradation of electronic nicotine delivery system liquids generates toxic aldehydes. Scientific Reports, 2021, 11, 7800.	1.6	14
7	Impact of Hydration on Supported V2O5/TiO2 Catalysts as Explored by Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 16766-16775.	1.5	3
8	Activity of Cu–Al–Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites. Jacs Au, 2021, 1, 1412-1421.	3.6	21
9	Elucidating the Cooperative Roles of Water and Lewis Acid–Base Pairs in Cascade C–C Coupling and Self-Deoxygenation Reactions. Jacs Au, 2021, 1, 1471-1487.	3.6	5
10	Structure–Activity Relationships of Hydrothermally Aged Titania-Supported Vanadium–Tungsten Oxide Catalysts for SCR of NO _{<i>x</i>} Emissions with NH ₃ . ACS Catalysis, 2021, 11, 12096-12111.	5 . 5	20
11	Role of a Multivalent Ion–Solvent Interaction on Restricted Mg ²⁺ Diffusion in Dimethoxyethane Electrolytes. Journal of Physical Chemistry B, 2021, 125, 12574-12583.	1.2	7
12	Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research. Chemistry of Materials, 2021, 33, 8562-8590.	3.2	20
13	Palladium/Zeolite Low Temperature Passive NOx Adsorbers (PNA): Structure-Adsorption Property Relationships for Hydrothermally Aged PNA Materials. Emission Control Science and Technology, 2020, 6, 126-138.	0.8	38
14	Single-Step Conversion of Ethanol to <i>n</i> -Butene over Ag-ZrO ₂ /SiO ₂ Catalysts. ACS Catalysis, 2020, 10, 10602-10613.	5 . 5	34
15	Role of Solvent Rearrangement on Mg ²⁺ Solvation Structures in Dimethoxyethane Solutions using Multimodal NMR Analysis. Journal of Physical Chemistry Letters, 2020, 11, 6443-6449.	2.1	27
16	Origin of Unusual Acidity and Li ⁺ Diffusivity in a Series of Water-in-Salt Electrolytes. Journal of Physical Chemistry B, 2020, 124, 5284-5291.	1.2	26
17	Probing Conformational Evolution and Associated Dynamics of Mg(N(SO ₂ CF ₃) ₂ \$\frac{2}{\sub}\$\fra	1.5	13
18	Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials. Accounts of Chemical Research, 2020, 53, 611-619.	7.6	48

#	Article	IF	Citations
19	Thermal perturbation of NMR properties in small polar and non-polar molecules. Scientific Reports, 2020, 10, 6097.	1.6	9
20	Intermediate Species in the Crystallization of Sodium Aluminate Hydroxy Hydrates. Journal of Physical Chemistry C, 2020, 124, 12337-12345.	1.5	10
21	High-Temperature and High-Pressure In situ Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Visualized Experiments, 2020, , .	0.2	5
22	Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>} Abatement: Structural Effects Revealed by ⁵¹ V MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 12609-12616.	7.2	96
23	Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>} Abatement: Structural Effects Revealed by ⁵¹ V MAS NMR Spectroscopy. Angewandte Chemie, 2019, 131, 12739-12746.	1.6	45
24	InnenrÃ $\frac{1}{4}$ cktitelbild: Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>} Abatement: Structural Effects Revealed by ⁵¹ V MAS NMR Spectroscopy (Angew. Chem. 36/2019). Angewandte Chemie, 2019, 131, 12847-12847.	1.6	1
25	Transformation of Gibbsite to Boehmite in Caustic Aqueous Solution at Hydrothermal Conditions. Crystal Growth and Design, 2019, 19, 5557-5567.	1.4	19
26	Unraveling Gibbsite Transformation Pathways into LiAl-LDH in Concentrated Lithium Hydroxide. Inorganic Chemistry, 2019, 58, 12385-12394.	1.9	29
27	Adsorption and Thermal Decomposition of Electrolytes on Nanometer Magnesium Oxide: An in Situ 13C MAS NMR Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38689-38696.	4.0	19
28	Genesis and Stability of Hydronium Ions in Zeolite Channels. Journal of the American Chemical Society, 2019, 141, 3444-3455.	6.6	119
29	Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brnsted acid sites. Journal of Catalysis, 2019, 370, 424-433.	3.1	40
30	Catalytic activation of ethylene C–H bonds on uniform d ⁸ Ir(<scp>i</scp>) and Ni(<scp>ii</scp>) cations in zeolites: toward molecular level understanding of ethylene polymerization on heterogeneous catalysts. Catalysis Science and Technology, 2019, 9, 6570-6576.	2.1	20
31	WO supported on \hat{I}^3 -Al2O3 with different morphologies as model catalysts for alkanol dehydration. Journal of Catalysis, 2018, 363, 1-8.	3.1	20
32	25Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes. Nano Energy, 2018, 46, 436-446.	8.2	37
33	Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature Catalysis, 2018, 1, 141-147.	16.1	85
34	Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy. Chemistry of Materials, 2018, 30, 888-897.	3.2	29
35	²⁷ Al Pulsed Field Gradient, Diffusion–NMR Spectroscopy of Solvation Dynamics and Ion Pairing in Alkaline Aluminate Solutions. Journal of Physical Chemistry B, 2018, 122, 10907-10912.	1.2	15
36	Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products. ACS Applied Nano Materials, 2018, 1, 7115-7128.	2.4	79

#	Article	IF	CITATIONS
37	<i>In situ</i> and <i>ex situ</i> NMR for battery research. Journal of Physics Condensed Matter, 2018, 30, 463001.	0.7	35
38	In Situ ²⁷ Al NMR Spectroscopy of Aluminate in Sodium Hydroxide Solutions above and below Saturation with Respect to Gibbsite. Inorganic Chemistry, 2018, 57, 11864-11873.	1.9	33
39	Hydrolysis of zeolite framework aluminum and its impact on acid catalyzed alkane reactions. Journal of Catalysis, 2018, 365, 359-366.	3.1	47
40	Development and Application of In Situ High-Temperature, High-Pressure Magic Angle Spinning NMR., 2018,, 1073-1091.		1
41	Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field ⁵¹ V Magic-Angle Spinning NMR. Journal of Physical Chemistry C, 2017, 121, 6246-6254.	1.5	39
42	NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation. Radiation Research, 2017, 188, 44.	0.7	17
43	Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. Nano Letters, 2017, 17, 3061-3067.	4.5	122
44	Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 9178-9185.	6.6	56
45	²⁷ Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields. Journal of Physical Chemistry C, 2017, 121, 12849-12854.	1.5	37
46	Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14741-14748.	4.0	47
47	Stability of Zeolites in Aqueous Phase Reactions. Chemistry of Materials, 2017, 29, 7255-7262.	3.2	55
48	Transitions in Al Coordination during Gibbsite Crystallization Using High-Field ²⁷ Al and ²³ Na MAS NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 27555-27562.	1.5	41
49	Development and Application of In Situ High-Temperature, High-Pressure Magic Angle Spinning NMR. , 2017, , 1-19.		5
50	Magic Angle Spinning NMR Metabolomics. Metabolomics: Open Access, 2016, 6, .	0.1	3
51	Investigating the Surface Structure of \hat{I}^3 -Al ₂ O ₃ Supported WO _X Catalysts by High Field ²⁷ Al MAS NMR and Electronic Structure Calculations. Journal of Physical Chemistry C, 2016, 120, 23093-23103.	1.5	26
52	Anodeâ€Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016, 26, 7094-7102.	7.8	495
53	Preferential Solvation of an Asymmetric Redox Molecule. Journal of Physical Chemistry C, 2016, 120, 27834-27839.	1.5	18
54	In Situ Natural Abundance ¹⁷ O and ²⁵ Mg NMR Investigation of Aqueous Mg(OH) ₂ Dissolution in the Presence of Supercritical CO ₂ . Environmental Science & Envi	4.6	7

#	Article	IF	CITATIONS
55	Nuclear magnetic resonance studies of the solvation structures of a high-performance nonaqueous redox flow electrolyte. Journal of Power Sources, 2016, 308, 172-179.	4.0	15
56	<i>In Situ</i> Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid Electrolyte Interface of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 2600-2608.	1.5	53
57	High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts. Journal of Catalysis, 2016, 336, 85-93.	3.1	47
58	Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. Journal of Power Sources, 2016, 307, 231-243.	4.0	58
59	<i>In Situ</i> High Temperature High Pressure MAS NMR Study on the Crystallization of AlPO ₄ -5. Journal of Physical Chemistry C, 2016, 120, 1701-1708.	1.5	23
60	In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process. Journal of Power Sources, 2016, 304, 51-59.	4.0	20
61	Investigation of water assisted phase transformation process from AlPO4-5 to AlPO4-tridymite. Microporous and Mesoporous Materials, 2016, 223, 241-246.	2.2	13
62	Activity of titania and zeolite samples dosed with triethylamine. Microporous and Mesoporous Materials, 2016, 220, 44-57.	2.2	4
63	NMR Metabolomics in Ionizing Radiation. Clinics in Oncology, 2016, 1, .	0.0	0
64	A fundamental study on the $[(\hat{1}/4-Cl) < sub>3 < / sub>Mg < sub>2 < / sub> (THF) < sub>6 < / sub>] < sup>+ < / sup> dimer electrolytes for rechargeable Mg batteries. Chemical Communications, 2015, 51, 2312-2315.$	2.2	53
65	Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System. Journal of the American Chemical Society, 2015, 137, 2600-2607.	6.6	57
66	Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy, 2015, 12, 750-759.	8.2	121
67	Investigation of the Structure and Active Sites of TiO ₂ Nanorod Supported VO _{<i>x</i>V MAS NMR. ACS Catalysts by High-Field and Fast-Spinning ⁵¹V MAS NMR. ACS Catalysis, 2015, 5, 3945-3952.}	5.5	51
68	Impact of Aqueous Medium on Zeolite Framework Integrity. Chemistry of Materials, 2015, 27, 3533-3545.	3.2	50
69	Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes. Journal of Power Sources, 2015, 285, 146-155.	4.0	29
70	Following the Transient Reactions in Lithium–Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance Technique. Nano Letters, 2015, 15, 3309-3316.	4.5	107
71	Unraveling the Origin of Structural Disorder in High Temperature Transition Al ₂ O ₃ : Structure of Î,-Al ₂ O ₃ . Chemistry of Materials, 2015, 27, 7042-7049.	3.2	51
72	Sealed rotors for in situ high temperature high pressure MAS NMR. Chemical Communications, 2015, 51, 13458-13461.	2.2	46

#	Article	IF	CITATIONS
7 3	Dynamic Structural Changes of SiO ₂ Supported Ptâ€"Ni Bimetallic Catalysts over Redox Treatments Revealed by NMR and EPR. Journal of Physical Chemistry C, 2015, 119, 21219-21226.	1.5	27
74	Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High-Field Solid-State NMR. Journal of Physical Chemistry C, 2015, 119, 1410-1417.	1.5	63
7 5	Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes. ChemPlusChem, 2015, 80, 428-437.	1.3	32
76	Towards Highâ€Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species. Advanced Energy Materials, 2015, 5, 1400678.	10.2	181
77	Diffusional motion of redox centers in carbonate electrolytes. Journal of Chemical Physics, 2014, 141, 104509.	1.2	24
78	Energetics of Defects on Graphene through Fluorination. ChemSusChem, 2014, 7, 1295-1300.	3.6	10
79	Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid–Electrolyte Interphase Film on Silicon Anode. ChemSusChem, 2014, 7, 549-554.	3.6	126
80	A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. Journal of Materials Chemistry A, 2014, 2, 3430.	5.2	197
81	Following Solidâ€Acidâ€Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase—Zeoliteâ€Catalyzed Conversion of Cyclohexanol in Water. Angewandte Chemie - International Edition, 2014, 53, 479-482.	7.2	57
82	Formation of submicron magnesite during reaction of natural forsterite in H2O-saturated supercritical CO2. Geochimica Et Cosmochimica Acta, 2014, 134, 197-209.	1.6	36
83	Structural analysis of N- and O-glycans using ZIC-HILIC/dialysis coupled to NMR detection. Fungal Genetics and Biology, 2014, 72, 207-215.	0.9	7
84	1H NMR metabolomics study of metastatic melanoma in C57BL/6J mouse spleen. Metabolomics, 2014, 10, 1129-1144.	1.4	18
85	Quantitatively Probing the Al Distribution in Zeolites. Journal of the American Chemical Society, 2014, 136, 8296-8306.	6.6	199
86	Elucidating graphene–ionic liquid interfacial region: A combined experimental and computational study. Nano Energy, 2014, 3, 152-158.	8.2	42
87	Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid. Advanced Functional Materials, 2013, 23, 929-946.	7.8	590
88	Clay Hydration/dehydration in Dry to Water-saturated Supercritical CO2: Implications for Caprock Integrity. Energy Procedia, 2013, 37, 5443-5448.	1.8	39
89	Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. International Journal of Greenhouse Gas Control, 2013, 15, 104-118.	2.3	80
90	Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. Journal of Power Sources, 2013, 241, 173-177.	4.0	85

#	Article	IF	Citations
91	Rotor design for high pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2013, 226, 64-69.	1.2	33
92	Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics. Metabolites, 2013, 3, 1011-1035.	1.3	40
93	A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Physical Chemistry Chemical Physics, 2012, 14, 2137-2143.	1.3	20
94	Structure and stability of hexa-aqua $V(iii)$ cations in vanadium redox flow battery electrolytes. Physical Chemistry Chemical Physics, 2012, 14, 10233.	1.3	55
95	<i>In Situ</i> Molecular Spectroscopic Evidence for CO ₂ Intercalation into Montmorillonite in Supercritical Carbon Dioxide. Langmuir, 2012, 28, 7125-7128.	1.6	117
96	Highly Dispersed and Active ReO _{<i>x</i>} on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration. ACS Catalysis, 2012, 2, 1020-1026.	5.5	22
97	The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. Journal of Power Sources, 2012, 215, 240-247.	4.0	197
98	Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures. Geochimica Et Cosmochimica Acta, 2012, 91, 271-282.	1.6	97
99	Lactic Acid Is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation via pH-Dependent Activation of Transforming Growth Factor-β. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 740-751.	2.5	265
100	Investigation of local environments in Nafion–SiO2 composite membranes used in vanadium redox flow batteries. Solid State Nuclear Magnetic Resonance, 2012, 42, 71-80.	1.5	61
101	Chloride supporting electrolytes for all-vanadium redox flow batteries. Physical Chemistry Chemical Physics, 2011, 13, 18186.	1.3	126
102	The role of H2O in the carbonation of forsterite in supercritical CO2. International Journal of Greenhouse Gas Control, 2011, 5, 1081-1092.	2.3	103
103	Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid-State NMR and Quantum Chemistry Calculations. Journal of Physical Chemistry C, 2011, 115, 23354-23362.	1.5	11
104	Solvent Evaporation Assisted Preparation of Oriented Nanocrystalline Mesoporous MFI Zeolites. ACS Catalysis, 2011, 1, 682-690.	5.5	67
105	High-pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2011, 212, 378-385.	1.2	42
106	A Stable Vanadium Redoxâ€Flow Battery with High Energy Density for Largeâ€Scale Energy Storage. Advanced Energy Materials, 2011, 1, 394-400.	10.2	688
107	Multiphase sequestration geochemistry: Model for mineral carbonation. Energy Procedia, 2011, 4, 5009-5016.	1.8	19
108	Lithium diffusion in Li4Ti5O12 at high temperatures. Journal of Power Sources, 2011, 196, 2211-2220.	4.0	65

#	Article	IF	CITATIONS
109	Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteries. Journal of Power Sources, 2011, 196, 3669-3672.	4.0	194
110	Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte. Journal of Power Sources, 2011, 196, 5674-5678.	4.0	197
111	Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries. Journal of Membrane Science, 2011, 366, 325-334.	4.1	107
112	Slow Magic Angle Sample Spinning: A Non- or Minimally Invasive Method for High-Resolution 1H Nuclear Magnetic Resonance (NMR) Metabolic Profiling. Methods in Molecular Biology, 2011, 708, 335-364.	0.4	3
113	Detailed investigation of ion exchange in ball-milled LiH+MgB2 system using ultra-high field nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2010, 195, 3645-3648.	4.0	16
114	Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery. Journal of Power Sources, 2010, 195, 7709-7717.	4.0	84
115	Solid-State Hydriding Mechanism in the LiBH ₄ + MgH ₂ System. Journal of Physical Chemistry C, 2010, 114, 8089-8098.	1.5	43
116	Metal Carbonation of Forsterite in Supercritical CO ₂ and H ₂ O Using Solid State ²⁹ Si, ¹³ C NMR Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 4126-4134.	1.5	89
117	Unique Role of Anchoring Penta-Coordinated Al $<$ sup $>$ 3+ $<$ /sup $>$ Sites in the Sintering of \hat{I}^3 -Al $<$ sub $>$ 0 $<$ sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ -Supported Pt Catalysts. Journal of Physical Chemistry Letters, 2010, 1, 2688-2691.	2.1	101
118	Direct observation of ion exchange in mechanically activated LiH+MgB2 system using ultrahigh field nuclear magnetic resonance spectroscopy. Applied Physics Letters, 2009, 94, 141905.	1.5	22
119	Coordinatively Unsaturated Al ³⁺ Centers as Binding Sites for Active Catalyst Phases of Platinum on Î ³ -Al ₂ O ₃ . Science, 2009, 325, 1670-1673.	6.0	790
120	Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics. Jom, 2009, 61, 45-51.	0.9	14
121	Low temperature milling of the LiNH2 + LiH hydrogen storage system. International Journal of Hydrogen Energy, 2009, 34, 4331-4339.	3.8	29
122	An isotropic chemical shift–chemical shift anisotropic correlation experiment using discrete magic angle turning. Journal of Magnetic Resonance, 2009, 198, 105-110.	1.2	2
123	Effect of Chemical Lithium Insertion into Rutile TiO ₂ Nanorods. Journal of Physical Chemistry C, 2009, 113, 14567-14574.	1.5	59
124	Characterization of Dispersed Heteropoly Acid on Mesoporous Zeolite Using Solid-State ³¹ P NMR Spinâ^Lattice Relaxation. Journal of the American Chemical Society, 2009, 131, 9715-9721.	6.6	42
125	Studies of the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State 95Mo NMR Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 2936-2942.	1.5	29
126	Combined ^{6,7} Li NMR and Molecular Dynamics Study of Li Diffusion in Li ₂ TiO ₃ . Journal of Physical Chemistry C, 2009, 113, 20108-20116.	1.5	107

#	Article	IF	Citations
127	Application of High-Resolution (sup > 1 < /sup > H MAS NMR Spectroscopy to the Analysis of Intact Bones from Mice Exposed to Gamma Radiation. Radiation Research, 2009, 172, 607-616.	0.7	14
128	Probing the reaction pathway of dehydrogenation of the LiNH2+LiH mixture using in situ 1H NMR spectroscopy. Journal of Power Sources, 2008, 181, 116-119.	4.0	25
129	Effects of Novel Supports on the Physical and Catalytic Properties of Tungstophosphoric Acid for Alcohol Dehydration Reactions. Topics in Catalysis, 2008, 49, 259-267.	1.3	24
130	Investigation of mechanical activation on Li–N–H systems using 6Li magic angle spinning nuclear magnetic resonance at ultra-high field. Journal of Power Sources, 2008, 182, 278-283.	4.0	18
131	Role of Pentacoordinated Al ³⁺ Ions in the High Temperature Phase Transformation of γ-Al ₂ O ₃ . Journal of Physical Chemistry C, 2008, 112, 9486-9492.	1.5	106
132	Direct Observation of the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field ⁹⁵ Mo NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 3722-3723.	6.6	134
133	Metabolomics in Lung Inflammation: A High-Resolution (sup > 1 < /sup > H NMR Study of Mice Exposedto Silica Dust. Toxicology Mechanisms and Methods, 2008, 18, 385-398.	1.3	57
134	A BAYESIAN INTEGRATION MODEL OF HIGH-THROUGHPUT PROTEOMICS AND METABOLOMICS DATA FOR IMPROVED EARLY DETECTION OF MICROBIAL INFECTIONS. , 2008, , .		6
135	Study the effects of mechanical activation on Li–N–H systems with 1H and 6Li solid-state NMR. Journal of Power Sources, 2007, 170, 419-424.	4.0	26
136	Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on Î ³ -Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. Journal of Catalysis, 2007, 251, 189-194.	3.1	173
137	A new class of highly dispersed VOx catalysts on mesoporous silica: Synthesis, characterization, and catalytic activity in the partial oxidation of ethanol. Applied Catalysis A: General, 2006, 300, 109-119.	2.2	41
138	In vivo and ex vivo high-resolution 1H NMR in biological systems using low-speed magic angle spinning. Progress in Nuclear Magnetic Resonance Spectroscopy, 2006, 49, 207-259.	3.9	46
139	Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition. Topics in Catalysis, 2006, 39, 245-255.	1.3	43
140	Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. Journal of Catalysis, 2006, 239, 200-211.	3.1	130
141	1H relaxation times of metabolites in biological samples obtained with nondestructiveex-vivo slow-MAS NMR. Magnetic Resonance in Chemistry, 2006, 44, 269-275.	1.1	9
142	Localized in vivo isotropic-anisotropic correlation 1H NMR spectroscopy using ultraslow magic angle spinning. Magnetic Resonance in Medicine, 2006, 55, 41-49.	1.9	25
143	Line narrowing in 1H MAS spectrum of mesoporous silica by removing adsorbed H2O using N2. Solid State Nuclear Magnetic Resonance, 2005, 27, 200-205.	1.5	32
144	Polymer-Ceramic Conversion of Liquid Polyaluminasilazanes for SiAlCN Ceramics. Journal of the American Ceramic Society, 2005, 88, 2415-2419.	1.9	69

#	Article	IF	CITATIONS
145	Slow-MAS NMR: A new technology for in vivo metabolomic studies. Drug Discovery Today: Technologies, 2005, 2, 291-294.	4.0	12
146	Dynamic High-Resolution 1H and 31P NMR Spectroscopy and 1H T2Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning. Journal of Agricultural and Food Chemistry, 2004, 52, 2681-2688.	2.4	27
147	High-resolution1H NMR spectroscopy in a live mouse subjected to 1.5 Hz magic angle spinning. Magnetic Resonance in Medicine, 2003, 50, 1113-1119.	1.9	41
148	Sensitivity-enhanced phase-corrected ultra-slow magic angle turning using multiple-echo data acquisition. Journal of Magnetic Resonance, 2003, 163, 149-162.	1.2	35
149	Ring-chain tautomerism in solid-phase erythromycin A: evidence by solid-state NMR. Solid State Nuclear Magnetic Resonance, 2003, 24, 23-38.	1.5	16
150	Stereochemical Analysis by Solid-State NMR:Â Structural Predictions in Ambuic Acid. Journal of Organic Chemistry, 2003, 68, 4609-4614.	1.7	50
151	Carbon-13 Chemical-Shift Tensors in Polycyclic Aromatic Compounds:  Fluoranthene and Decacyclene. Journal of Physical Chemistry A, 2002, 106, 6477-6482.	1.1	9
152	Production of Diethyl Carbonate from Ethanol and Carbon Monoxide over a Heterogeneous Catalyst. Energy & Energy	2.5	104
153	High-resolution1H NMR spectroscopy in rat liver using magic angle turning at a 1 Hz spinning rate. Magnetic Resonance in Medicine, 2002, 47, 829-836.	1.9	48
154	The evaluation of different MAS techniques at low spinning rates in aqueous samples and in the presence of magnetic susceptibility gradients. Journal of Magnetic Resonance, 2002, 159, 92-100.	1.2	21
155	Structural Determination in Carbonaceous Solids Using Advanced Solid State NMR Techniques. Energy & En	2.5	64
156	13C Chemical-shift tensors in an analogous series of heterosubstituted polycyclic aromatic compounds. Magnetic Resonance in Chemistry, 2001, 39, 115-121.	1.1	7
157	High-resolution1H NMR spectroscopy in organs and tissues using slow magic angle spinning. Magnetic Resonance in Medicine, 2001, 46, 213-218.	1.9	61
158	A Novel Dipolar Dephasing Method for the Slow Magic Angle Turning Experiment. Journal of Magnetic Resonance, 2001, 152, 7-13.	1.2	5
159	Modified Spectral Editing Methods for 13C CP/MAS Experiments in Solids. Journal of Magnetic Resonance, 2000, 142, 326-330.	1.2	27
160	1H Dynamic Nuclear Polarization in Supercritical Ethylene at 1.4 T. Journal of Magnetic Resonance, 2000, 143, 233-239.	1.2	8
161	A High-Resolution 13C 3D CSA-CSA-CSA Correlation Experiment by Means of Magic Angle Turning. Journal of Magnetic Resonance, 2000, 145, 230-236.	1.2	2
162	Investigation of Polyethylene by Means of Magic Angle Turning and Separated-Local-Field Experiments. Macromolecules, 2000, 33, 3359-3367.	2.2	11

#	Article	IF	CITATIONS
163	H and 15N Dynamic Nuclear Polarization Studies of Carbazole. Journal of Physical Chemistry A, 2000, 104, 4413-4420.	1.1	16
164	Modeling of the 15N and 13C Chemical Shift Tensors in Purine. ACS Symposium Series, 1999, , 162-176.	0.5	3
165	Ab initio calculation and experimental determination of the 13C chemical shielding tensors of 4,4 \hat{a} €²-dimethoxybiphenyl. Computational and Theoretical Chemistry, 1998, 428, 283-286.	1.5	18
166	CP/MAS spectral editing of dried pine leaves. Solid State Nuclear Magnetic Resonance, 1998, 12, 31-36.	1.5	7
167	15N Chemical Shift Tensors in Nucleic Acid Bases. Journal of the American Chemical Society, 1998, 120, 9863-9869.	6.6	80
168	Solid State NMR and Wide Angle X-ray Diffraction Studies of Supercritical Fluid CO2-Treated Poly(ethylene terephthalate). Macromolecules, 1998, 31, 9238-9246.	2.2	26
169	A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Molecular Physics, 1998, 95, 1113-1126.	0.8	138
170	Solid-State 13C NMR Measurements in Methoxynaphthalenes:  Determination of the Substituent Chemical Shift Effects in the Principal Values. Journal of Physical Chemistry A, 1997, 101, 9169-9175.	1.1	11
171	13C high resolution solid state NMR spectra of Chinese coals. Science in China Series D: Earth Sciences, 1997, 40, 65-72.	0.9	2
172	Dynamic nuclear polarization of nitrogen-15 in benzamide. Solid State Nuclear Magnetic Resonance, 1997, 8, 129-137.	1.5	16
173	Measurement of spin-lattice relaxation times of $13\mathrm{C}$ in organic solids. Solid State Nuclear Magnetic Resonance, $1997, 7, 291-299$.	1.5	11
174	Hydrogen Bonding Effects on the 13C NMR Chemical Shift Tensors of Some Amino Acids in the Solid State. Magnetic Resonance in Chemistry, 1997, 35, 606-608.	1.1	24
175	A High-Resolution 3D Separated-Local-Field Experiment by Means of Magic-Angle Turning. Journal of Magnetic Resonance, 1997, 126, 120-126.	1.2	12
176	Technique for Importing Greater Evolution Resolution in Multidimensional NMR Spectrum. Journal of Magnetic Resonance, 1997, 129, 134-144.	1.2	48
177	Quantum chemical calculation and experimental measurement of the 13C chemical shift tensors of vanillin and 3,4-dimethoxybenzaldehyde. Chemical Physics Letters, 1997, 266, 533-536.	1.2	15
178	Spectral editing in 13C CP/MAS experiments at high magnetic field. Solid State Nuclear Magnetic Resonance, 1996, 6, 187-196.	1.5	11
179	The use of differential transverse relaxation to detect mobile species in solids. Solid State Nuclear Magnetic Resonance, 1996, 6, 63-71.	1.5	15
180	High resolution 1H spectra of powdered solids observed by Hahn echo pulse sequence with magic-angle spinning. Solid State Nuclear Magnetic Resonance, 1996, 6, 85-94.	1.5	13

#	Article	lF	CITATIONS
181	Investigation of a naphthalene pitch by high-resolution solid-state dynamic nuclear polarization. Solid State Nuclear Magnetic Resonance, 1996, 6, 127-133.	1.5	4
182	Magic-Angle-Turning Experiments for Measuring Chemical-Shift-Tensor Principal Values in Powdered Solids. Journal of Magnetic Resonance Series A, 1995, 113, 210-222.	1.6	133
183	Use of relaxation agent doping to shorten very long spin-lattice relaxation times in a magic-angle turning experiment. Solid State Nuclear Magnetic Resonance, 1995, 5, 257-262.	1.5	5
184	Investigation of Coal and a Naphthalene Pitch by Means of the Triple-Echo Magic Angle Turning Experiment. Energy & Samp; Fuels, 1995, 9, 717-726.	2.5	9
185	Solid-State 13C NMR, X-ray, and Quantum Mechanical Studies of the Carbon Chemical Shifts Tensors of p-Tolyl Ether. The Journal of Physical Chemistry, 1994, 98, 12186-12190.	2.9	13
186	Measurement of 13C chemical shift tensor principal values with a magic-angle turning experiment. Solid State Nuclear Magnetic Resonance, 1994, 3, 181-197.	1.5	50
187	An Isotropic Chemical Shift-Chemical Shift Anisotropy Magic-Angle Slow-Spinning 2D NMR Experiment. Journal of Magnetic Resonance Series A, 1993, 105, 82-87.	1.6	94
188	Carbon-13 chemical shift anisotropies of solid amino acids. Magnetic Resonance in Chemistry, 1993, 31, 699-704.	1.1	146
189	Improvements to the magic angle hopping experiment. Solid State Nuclear Magnetic Resonance, 1993, 2, 235-243.	1.5	8
190	Solid-state NMR studies of 1H spin diffusion in adsorbed organic molecules. Solid State Nuclear Magnetic Resonance, 1993, 2, 97-103.	1.5	3
191	A simple approach to measuring spin diffusion of abundant nuclei in dipolar-broadened solids. Journal of Magnetic Resonance, 1992, 99, 576-581.	0.5	6
192	Sideband separation of protonated and non-protonated carbons in MAS NMR. Chemical Physics Letters, 1992, 195, 159-162.	1.2	3
193	Slow-MAS NMR Methods To Study Metabolic Processes in vivo and in vitro. Special Publication - Royal Society of Chemistry, 0, , 156-165.	0.0	1
194	Modelling complex molecular interactions in catalytic materials for energy storage and conversion in nuclear magnetic resonance. Frontiers in Catalysis, 0, 2, .	1.8	1