
Jan Å krha jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185881/publications.pdf Version: 2024-02-01

ΙλΝΙ ΔΥΡΗΛΙΡ

#	Article	IF	CITATIONS
1	Lipidomic profiling of human serum enables detection of pancreatic cancer. Nature Communications, 2022, 13, 124.	12.8	68
2	The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nature Communications, 2022, 13, 684.	12.8	16
3	Diabetes, Lipids, and CV Risk. Current Atherosclerosis Reports, 2021, 23, 8.	4.8	6
4	Glycemic Outcomes in Adults With T1D Are Impacted More by Continuous Glucose Monitoring Than by Insulin Delivery Method: 3 Years of Follow-Up From the COMISAIR Study. Diabetes Care, 2020, 43, 37-43.	8.6	168
5	lssues for the management of people with diabetes and COVID-19 in ICU. Cardiovascular Diabetology, 2020, 19, 114.	6.8	41
6	Worldwide inertia to the use of cardiorenal protective glucose-lowering drugs (SGLT2i and GLP-1 RA) in high-risk patients with type 2 diabetes. Cardiovascular Diabetology, 2020, 19, 185.	6.8	83
7	Issues of Cardiovascular Risk Management in People With Diabetes in the COVID-19 Era. Diabetes Care, 2020, 43, 1427-1432.	8.6	72
8	1518-P: Worsening of Microvascular Reactivity and Markers of Endothelial Activation and Oxidative Stress in Patients with Stabilized Type 1 Diabetes: 3-Year Follow-Up. Diabetes, 2020, 69, .	0.6	2
9	Lipid peroxidation and impaired vascular function in patients with type 1 diabetes mellitus. Monatshefte Für Chemie, 2019, 150, 525-529.	1.8	2
10	Postprandial microvascular reactivity is significantly modified by endogenous insulin in recently diagnosed Type 2 diabetic patients. Diabetes Research and Clinical Practice, 2018, 139, 300-307.	2.8	2
11	Diabetes, Cardiovascular Disorders and 2,3,7,8â€Tetrachlorodibenzoâ€ <i>pâ€</i> Dioxin Body Burden in Czech Patients 50ÂYears After the Intoxication. Basic and Clinical Pharmacology and Toxicology, 2018, 123, 356-359.	2.5	10
12	Angiopoietin-like protein 3 and 4 in obesity, type 2 diabetes mellitus, and malnutrition: the effect of weight reduction and realimentation. Nutrition and Diabetes, 2018, 8, 21.	3.2	52
13	Prevalence and Risk Factors of Osteoporosis in Postmenopausal Women with Type 2 Diabetes Mellitus. Central European Journal of Public Health, 2017, 25, 3-10.	1.1	31
14	Comparison of Different Treatment Modalities for Type 1 Diabetes, Including Sensor-Augmented Insulin Regimens, in 52 Weeks of Follow-Up: A COMISAIR Study. Diabetes Technology and Therapeutics, 2016, 18, 532-538.	4.4	100
15	Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology, 2016, 16, 829-838.	1.1	28
16	Serum microRNA-196 and microRNA-200 in pancreatic ductal adenocarcinoma of patients with diabetes mellitus. Pancreatology, 2016, 16, 839-843.	1.1	15
17	Glucose variability, HbA1c and microvascular complications. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 103-110.	5.7	105
18	High Prevalence of Hypovitaminosis D in Postmenopausal Women with Type 2 Diabetes Mellitus. Prague Medical Report, 2016, 117, 5-17.	0.8	10

Jan Åkrha jr

#	Article	IF	CITATIONS
19	Diabetes mellitus—a global pandemicKeynote lecture presented at the Wonca conference in Prague in June 2013. European Journal of General Practice, 2014, 20, 65-68.	2.0	6
20	Glycemic Variability Is Higher in Type 1 Diabetes Patients with Microvascular Complications Irrespective of Glycemic Control. Diabetes Technology and Therapeutics, 2014, 16, 198-203.	4.4	96
21	Skin Autofluorescence Relates to Soluble Receptor for Advanced Glycation End-Products and Albuminuria in Diabetes Mellitus. Journal of Diabetes Research, 2013, 2013, 1-7.	2.3	17
22	Acute Hyperglycemia Does Not Impair Microvascular Reactivity and Endothelial Function during Hyperinsulinemic Isoglycemic and Hyperglycemic Clamp in Type 1 Diabetic Patients. Experimental Diabetes Research, 2012, 2012, 1-8.	3.8	4
23	Relationship of Soluble RAGE and RAGE Ligands HMGB1 and EN-RAGE to Endothelial Dysfunction in Type 1 and Type 2 Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2012, 120, 277-281.	1.2	60
24	Induction of the mitochondrial permeability transition (MPT) by micromolar iron: Liberation of calcium is more important than NAD(P)H oxidation. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1537-1549.	1.0	10
25	Effect of caloric restriction on oxidative markers. Advances in Clinical Chemistry, 2009, 47, 223-47.	3.7	3
26	2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity. Human and Experimental Toxicology, 2007, 26, 705-713.	2.2	22
27	Oxidative stress and endothelium influenced by metformin in type 2 diabetes mellitus. European Journal of Clinical Pharmacology, 2007, 63, 1107-1114.	1.9	37
28	Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, The, 2005, 366, 1279-1289.	13.7	3,840
29	Can the atherosclerosis prevention targets be achieved in type 2 diabetes?. Diabetes Research and Clinical Practice, 2005, 68, S48-S51.	2.8	8
30	Comparison of the Insulin Action Parameters from Hyperinsulinemic Clamps with Homeostasis Model Assessment and QUICKI Indexes in Subjects with Different Endocrine Disorders. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 135-141.	3.6	93
31	Serum α-tocopherol and ascorbic acid concentrations in Type 1 and Type 2 diabetic patients with and without angiopathy. Clinica Chimica Acta, 2003, 329, 103-108.	1.1	22
32	Comparison of laser-Doppler flowmetry with biochemical indicators of endothelial dysfunction related to early microangiopathy in Type 1 diabetic patients. Journal of Diabetes and Its Complications, 2001, 15, 234-240.	2.3	41
33	Serum isoamylase activities during infusions of glucose and amino acids. European Journal of Clinical Investigation, 1986, 16, 35-38.	3.4	3