Kenta Mizuse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1858492/publications.pdf

Version: 2024-02-01

430874 434195 33 975 18 31 h-index citations g-index papers 36 36 36 852 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Infrared photodissociation spectroscopy of H+(H2O)6 \hat{A} ·Mm (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O+ and H5O2+ core isomers. Physical Chemistry Chemical Physics, 2011, 13, 7129.	2.8	107
2	Infrared Spectra and Hydrogenâ€Bonded Network Structures of Large Protonated Water Clusters H ⁺ (H ₂ O) _{<i>n</i>} (<i>n</i> =20 â€" 200). Angewandte Chemie - International Edition, 2010, 49, 10119-10122.	13.8	93
3	Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. International Reviews in Physical Chemistry, 2013, 32, 266-307.	2.3	87
4	Structural trends of ionized water networks: Infrared spectroscopy of watercluster radical cations (H2O)n+ (n = $3\hat{a} \in 11$). Chemical Science, 2011, 2, 868-876.	7.4	80
5	Tuning of the Internal Energy and Isomer Distribution in Small Protonated Water Clusters H ⁺ (H ₂ O) _{4–8} : An Application of the Inert Gas Messenger Technique. Journal of Physical Chemistry A, 2012, 116, 4868-4877.	2.5	75
6	Infrared Spectroscopy of Phenolâ^'(H ₂ O) _{<i>n</i>>10} : Structural Strains in Hydrogen Bond Networks of Neutral Water Clusters. Journal of Physical Chemistry A, 2009, 113, 12134-12141.	2.5	55
7	Spectral Signatures of Four-Coordinated Sites in Water Clusters: Infrared Spectroscopy of Phenolâ^'(H ₂ O) _{<i>n</i>} (â^1/420 â% <i>n</i> â% â^1/450). Journal of Physical Chemistry 2011, 115, 620-625.	y A 5	50
8	Characterization of a Solvent-Separated Ion-Radical Pair in Cationized Water Networks: Infrared Photodissociation and Ar-Attachment Experiments for Water Cluster Radical Cations $(H \cdot Sub \cdot O) \cdot Sub \cdot (i \cdot n \cdot i \cdot Sub \cdot S$	2.5	49
9	Quantum unidirectional rotation directly imaged with molecules. Science Advances, 2015, 1, e1400185.	10.3	47
10	Long range influence of an excess proton on the architecture of the hydrogen bond network in large-sized water clusters. Journal of Chemical Physics, 2007, 126, 231101.	3.0	46
11	Folding of the Hydrogen Bond Network of H+(CH3OH)7 with Rare Gas Tagging. Journal of Physical Chemistry A, 2013, 117, 101-107.	2.5	35
12	Structures of hydrogen bond networks formed by a few tens of methanol molecules in the gas phase: size-selective infrared spectroscopy of neutral and protonated methanol clusters. Physical Chemistry Chemical Physics, 2013, 15, 9523.	2.8	31
13	Structural Origin of the Antimagic Number in Protonated Water Clusters H ⁺ (H ₂ O) _{<i>n</i>>} : Spectroscopic Observation of the "Missing― Water Molecule in the Outermost Hydration Shell. Journal of Physical Chemistry Letters, 2011, 2, 2130-2134.	4.6	28
14	Infrared spectroscopy of large protonated water clusters H+(H2O)20–50 cooled by inert gas attachment. Chemical Physics, 2013, 419, 2-7.	1.9	28
15	Compatibility between methanol and water in the three-dimensional cage formation of large-sized protonated methanol-water mixed clusters. Journal of Chemical Physics, 2007, 126, 194306.	3.0	26
16	Hydrogen-bonded ring closing and opening of protonated methanol clusters $H < \sup + 3 with the inert gas tagging. Physical Chemistry Chemical Physics, 2015, 17, 22042-22053.$	2.8	23
17	Observation of an Isolated Intermediate of the Nucleophilic Aromatic Substition Reaction by Infrared Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 6008-6010.	13.8	20
18	Infrared and Electronic Spectroscopy of Benzeneâ^'Ammonia Cluster Radical Cations [C ₆ H ₆ (NH ₃) _{1,2}] ⁺ : Observation of Isolated and Microsolvated If-Complexes. Journal of Physical Chemistry A, 2010, 114, 11060-11069.	2.5	19

#	Article	IF	CITATIONS
19	Infrared and Electronic Spectroscopy of a Model System for the Nucleophilic Substitution Intermediate in the Gas Phase:  The Câ°N Valence Bond Formation in the Benzeneâ°Ammonia Cluster Cation. Journal of Physical Chemistry A, 2006, 110, 6387-6390.	2.5	18
20	Direct imaging of direction-controlled molecular rotational wave packets created by a polarization-skewed double-pulse. Physical Chemistry Chemical Physics, 2020, 22, 10853-10862.	2.8	10
21	Space-slice ion imaging: High slice resolution imaging in the polarization plane of arbitrarily polarized ionizing light. Review of Scientific Instruments, 2019, 90, 103107.	1.3	9
22	Solvation-Induced Ïf-Complex Structure Formation in the Gas Phase: A Revisit to the Infrared Spectroscopy of [C ₆ H ₆ –(CH ₃ OH) ₂] ⁺ . Journal of Physical Chemistry A, 2011, 115, 11156-11161.	2.5	7
23	Direct Imaging of Laser-driven Ultrafast Molecular Rotation. Journal of Visualized Experiments, 2017, ,	0.3	5
24	Visualizing rotational wave functions of electronically excited nitric oxide molecules by using an ion imaging technique. Physical Chemistry Chemical Physics, 2018, 20, 3303-3309.	2.8	5
25	Rotational spectroscopy of the argon dimer by time-resolved Coulomb explosion imaging of rotational wave packets. Physical Chemistry Chemical Physics, 2022, 24, 11014-11022.	2.8	5
26	Rotational wave-packet imaging spectroscopy of the ethylene dimer. Chemical Physics Letters, 2022, 803, 139850.	2.6	3
27	Acceleration and Deceleration of Unidirectional Molecular Rotation by a Femtosecond Laser Pulse. Chemistry Letters, 2019, 48, 1371-1374.	1.3	2
28	Quantum-state reconstruction of unidirectional molecular rotations. Physical Review A, 2021, 103, .	2.5	2
29	Infrared Spectroscopy of Water Cluster Radical Cations (H2O) n + Â(nÂâ‰Â11). Springer Theses, 2013, , 137-170.	0.1	0
30	Tuning of the Internal Energy and Isomer Distribution in Protonated Water Clusters H+(H2O) n (nÂâ‰Â5O): Towards a More Detailed Understanding of Structures and Dynamics. Springer Theses, 2013, , 87-135.	0.1	0
31	Infrared Spectroscopy of Chromophore-Labeled Water Clusters Phenol-(H2O) n (nÂ<Â~50). Springer Theses, 2013, , 15-50.	0.1	0
32	Infrared Spectroscopy Of Large Protonated Water Clusters H+(H2O) n (nÂâ‰Â221). Springer Theses, 2013, , 51-86.	0.1	0
33	High-precision Spatiotemporal Imaging of Molecular Rotational Wave Packets. Molecular Science, 2019, 13, A0104.	0.2	0