List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1857886/publications.pdf Version: 2024-02-01



ZONC-CALTU

| #  | Article                                                                                                                                                                                                              | lF                | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 1  | Flavor, antimicrobial activity and physical properties of gelatin film incorporated with of ginger essential oil. Journal of Food Science and Technology, 2022, 59, 815-824.                                         | 2.8               | 14            |
| 2  | Simulated in vitro digestion of α-lactalbumin modified by phosphorylation: Detection of digestive products and allergenicity. Food Chemistry, 2022, 372, 131308.                                                     | 8.2               | 7             |
| 3  | Protective effect of antioxidant peptides from grass carp scale gelatin on the H2O2-mediated oxidative injured HepG2 cells. Food Chemistry, 2022, 373, 131539.                                                       | 8.2               | 38            |
| 4  | Insight into the mechanism of d-allose in reducing the allergenicity and digestibility of<br>ultrasound-pretreated α-lactalbumin by high-resolution mass spectrometry. Food Chemistry, 2022, 374,<br>131616.         | 8.2               | 9             |
| 5  | Characteristic tryptic peptides and gelling properties of porcine skin gelatin affected by thermal action. International Journal of Food Science and Technology, 2022, 57, 1573-1586.                                | 2.7               | 1             |
| 6  | Effects of Superheated Steam Treatment on the Allergenicity and Structure of Chicken Egg<br>Ovomucoid. Foods, 2022, 11, 238.                                                                                         | 4.3               | 13            |
| 7  | Mechanism of viscosity reduction of okra pectic polysaccharide by ascorbic acid. Carbohydrate<br>Polymers, 2022, 284, 119196.                                                                                        | 10.2              | 7             |
| 8  | Anti-inflammatory Dimeric Benzophenones from an Endophytic Pleosporales Species. Journal of<br>Natural Products, 2022, 85, 162-168.                                                                                  | 3.0               | 7             |
| 9  | Effect of frying on the lipid oxidation and volatile substances in grass carp ( <i>Ctenopharyngodon) Tj ETQq1 1 (</i>                                                                                                | ).784314 ı<br>2.0 | rgBT /Overloc |
| 10 | Effect of Grass Carp Scale Collagen Peptide FTGML on cAMP-PI3K/Akt and MAPK Signaling Pathways in<br>B16F10 Melanoma Cells and Correlation between Anti-Melanin and Antioxidant Properties. Foods, 2022,<br>11, 391. | 4.3               | 10            |
| 11 | Effect of coating on flavor metabolism of fish under different storage temperatures. Food Chemistry:<br>X, 2022, 13, 100256.                                                                                         | 4.3               | 12            |
| 12 | Inhibitory activity and mechanism of guavinoside B from guava fruits against αâ€glucosidase: Insights by spectroscopy and molecular docking analyses. Journal of Food Biochemistry, 2022, 46, e14101.                | 2.9               | 2             |
| 13 | Set of Cytochrome P450s Cooperatively Catalyzes the Synthesis of a Highly Oxidized and Rearranged<br>Diterpene-Class Sordarinane Architecture. Journal of the American Chemical Society, 2022, 144,<br>3580-3589.    | 13.7              | 7             |
| 14 | Ultrasound Improved the Non-Covalent Interaction of β-Lactoglobulin with Luteolin: Regulating<br>Human Intestinal Microbiota and Conformational Epitopes Reduced Allergy Risks. Foods, 2022, 11, 988.                | 4.3               | 5             |
| 15 | From Fish Scale Gelatin to Tyrosinase Inhibitor: A Novel Peptides Screening Approach Application.<br>Frontiers in Nutrition, 2022, 9, 853442.                                                                        | 3.7               | 6             |
| 16 | Extraction optimization and screening of antioxidant peptides from grass carp meat and synergistic–antagonistic effect. Food Science and Nutrition, 2022, 10, 1481-1493.                                             | 3.4               | 7             |
| 17 | Interaction Mechanism between OVA and Flavonoids with Different Hydroxyl Groups on B-Ring and Effect on Antioxidant Activity. Foods, 2022, 11, 1302.                                                                 | 4.3               | 5             |
| 18 | Oxidative stabilities of grass carp oil: possible mechanisms of volatile species formation in<br>hydroperoxylated metabolites at high temperature. European Food Research and Technology, 2022,<br>248, 2079-2095.   | 3.3               | 1             |

| #  | Article                                                                                                                                                                                                                                                | IF               | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 19 | Isolation and allergenicity evaluation of glycated α-lactalbumin digestive products and identification of allergenic peptides. Food Chemistry, 2022, 390, 133185.                                                                                      | 8.2              | 4                  |
| 20 | Ultrasonic pretreatment improved the physicochemical properties and riboflavin delivery ability of transglutaminase-catalyzed soy protein isolate gel. Food Hydrocolloids, 2022, 131, 107782.                                                          | 10.7             | 14                 |
| 21 | Effects of ultrasound on functional properties, structure and glycation properties of proteins: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 2471-2481.                                                                         | 10.3             | 43                 |
| 22 | Characteristics of fish gelatin-anionic polysaccharide complexes and their applications in yoghurt:<br>Rheology and tribology. Food Chemistry, 2021, 343, 128413.                                                                                      | 8.2              | 35                 |
| 23 | Investigation of the effect of oxidation on the structure of β-lactoglobulin by high resolution mass spectrometry. Food Chemistry, 2021, 339, 127939.                                                                                                  | 8.2              | 9                  |
| 24 | Effects of preâ€freezing methods and storage temperatures on the qualities of crucian carp () Tj ETQq0 0 0 rgBT<br>Preservation, 2021, 45, e15139.                                                                                                     | /Overlock<br>2.0 | 10 Tf 50 547<br>12 |
| 25 | Investigation of the mechanism underlying the influence of mild glycation on the digestibility and<br>IgC/IgE-binding abilities of β-lactoglobulin and its digests through LC orbitrap MS/MS. LWT - Food<br>Science and Technology, 2021, 139, 110506. | 5.2              | 8                  |
| 26 | Insight into the mechanism of urea inhibit ovalbumin-glucose glycation by conventional spectrometry and liquid chromatography-high resolution mass spectrometry. Food Chemistry, 2021, 342, 128340.                                                    | 8.2              | 5                  |
| 27 | The IgE/IgG binding capacity and structural changes of Alaska Pollock parvalbumin glycated with different reducing sugars. Journal of Food Biochemistry, 2021, 45, e13539.                                                                             | 2.9              | 13                 |
| 28 | A systematic assessment of structural heterogeneity and IgG/IgE-binding of ovalbumin. Food and Function, 2021, 12, 8130-8140.                                                                                                                          | 4.6              | 5                  |
| 29 | Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes<br>(α-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities.<br>Foods, 2021, 10, 315.                     | 4.3              | 36                 |
| 30 | Mechanism of the Reduced IgG/IgE Binding Abilities of Glycated β-Lactoglobulin and Its Digests through<br>High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2021, 69, 3741-3750.                                          | 5.2              | 22                 |
| 31 | Mechanism on the Allergenicity Changes of α-Lactalbumin Treated by Sonication-Assisted Glycation during <i>In Vitro</i> Gastroduodenal Digestion. Journal of Agricultural and Food Chemistry, 2021, 69, 6850-6859.                                     | 5.2              | 12                 |
| 32 | Bovine β-Lactoglobulin Covalent Modification by Flavonoids: Effect on the Allergenicity and Human<br>Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 6820-6828.                                                           | 5.2              | 9                  |
| 33 | Microbial transglutaminase (MTGase) modified fish gelatin-γ-polyglutamic acid (γ-PGA): Rheological<br>behavior, gelling properties, and structure. Food Chemistry, 2021, 348, 129093.                                                                  | 8.2              | 25                 |
| 34 | Gelling properties and structure modification of tilapia skin gelatin by the addition of γâ€polyglutamic<br>acid at different pH levels. International Journal of Food Science and Technology, 2021, 56, 5812-5823.                                    | 2.7              | 2                  |
| 35 | Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from<br>Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular<br>docking. Food Chemistry, 2021, 354, 129589.     | 8.2              | 21                 |
| 36 | Aromatic Cadinane Sesquiterpenoids from the Fruiting Bodies of <i>Phellinus pini</i> Block<br>SARS-CoV-2 Spike–ACE2 Interaction. Journal of Natural Products, 2021, 84, 2385-2389.                                                                     | 3.0              | 15                 |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Utilization of sonication-glycation to improve the functional properties of ovalbumin: A high-resolution mass spectrometry study. Food Hydrocolloids, 2021, 119, 106822.                                                                                     | 10.7 | 27        |
| 38 | Fabrication and performance evaluation of pectin–fish gelatin–resveratrol preservative films. Food<br>Chemistry, 2021, 361, 129832.                                                                                                                          | 8.2  | 29        |
| 39 | Investigation into predominant peptide and potential allergenicity of ultrasonicated β-lactoglobulin digestion products. Food Chemistry, 2021, 361, 130099.                                                                                                  | 8.2  | 12        |
| 40 | Urolithin A alleviates advanced glycation end-product formation by altering protein structures, trapping methylglyoxal and forming complexes. Food and Function, 2021, 12, 11849-11861.                                                                      | 4.6  | 5         |
| 41 | Mechanism of Reduction in Allergenicity and Altered Human Intestinal Microbiota of Digested<br>β-Lactoglobulin Modified by Ultrasonic Pretreatment Combined with Glycation. Journal of<br>Agricultural and Food Chemistry, 2021, 69, 14004-14012.            | 5.2  | 11        |
| 42 | Investigation on the Anaphylaxis and Anti-Digestive Stable Peptides Identification of<br>Ultrasound-Treated α-Lactalbumin during In-Vitro Gastroduodenal Digestion. Foods, 2021, 10, 2760.                                                                   | 4.3  | 4         |
| 43 | Mechanisms of isoquercitrin attenuates ovalbumin glycation: Investigation by spectroscopy, spectrometry and molecular docking. Food Chemistry, 2020, 309, 125667.                                                                                            | 8.2  | 31        |
| 44 | Identification and quantification of gelatin by a high-resolution mass spectrometry-based label-free method. Food Hydrocolloids, 2020, 101, 105476.                                                                                                          | 10.7 | 4         |
| 45 | Effects of γâ€polyglutamic acid on the gelling properties and nonâ€covalent interactions of fish gelatin.<br>Journal of Texture Studies, 2020, 51, 511-520.                                                                                                  | 2.5  | 16        |
| 46 | Influence of ultrasonic pretreatment on the structure, antioxidant and IgG/IgE binding activity of β-lactoglobulin during digestion in vitro. Food Chemistry, 2020, 312, 126080.                                                                             | 8.2  | 17        |
| 47 | The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation. Food Chemistry, 2020, 310, 125853.                                                                                    | 8.2  | 22        |
| 48 | Identification and analysis of characteristic tryptic peptides from porcine gelatin extracted with multi-stage batch processing. Food Hydrocolloids, 2020, 101, 105540.                                                                                      | 10.7 | 4         |
| 49 | Glycosylated fish gelatin emulsion: Rheological, tribological properties and its application as model coffee creamers. Food Hydrocolloids, 2020, 102, 105552.                                                                                                | 10.7 | 68        |
| 50 | Inhibition mechanism of α-glucosidase inhibitors screened from Artemisia selengensis Turcz root.<br>Industrial Crops and Products, 2020, 143, 111941.                                                                                                        | 5.2  | 17        |
| 51 | The influence of in vitro gastrointestinal digestion on the <i>Perilla frutescens</i> leaf extract:<br>Changes in the active compounds and bioactivities. Journal of Food Biochemistry, 2020, 44, e13530.                                                    | 2.9  | 14        |
| 52 | Improved antitumor activity and IgE/IgG–binding ability of α‣actalbumin/βâ€lactoglobulin induced by<br>ultrasonication prior to binding with oleic acid. Journal of Food Biochemistry, 2020, 44, e13502.                                                     | 2.9  | 5         |
| 53 | Influence of Hydroxyl Substitution on the Suppression of Flavonol in Harmful Glycation Product<br>Formation and the Inhibition Mechanism Revealed by Spectroscopy and Mass Spectrometry. Journal of<br>Agricultural and Food Chemistry, 2020, 68, 8263-8273. | 5.2  | 7         |
| 54 | Gelling properties and interaction analysis of fish gelatin–low-methoxyl pectin system with different concentrations of Ca2+. LWT - Food Science and Technology, 2020, 132, 109826.                                                                          | 5.2  | 21        |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Flavor, antimicrobial activity, and physical properties of composite film prepared with different surfactants. Food Science and Nutrition, 2020, 8, 3099-3109.                                                                                                      | 3.4  | 12        |
| 56 | Structural Properties, Bioactivities, and Applications of Polysaccharides from Okra [ <i>Abelmoschus<br/>esculentus</i> (L) Moench]: A Review. Journal of Agricultural and Food Chemistry, 2020, 68,<br>14091-14103.                                                | 5.2  | 39        |
| 57 | Glycation of β-lactoglobulin combined by sonication pretreatment reduce its allergenic potential.<br>International Journal of Biological Macromolecules, 2020, 164, 1527-1535.                                                                                      | 7.5  | 27        |
| 58 | Mechanism of Selenium Nanoparticles Inhibiting Advanced Clycation End Products. Journal of Agricultural and Food Chemistry, 2020, 68, 10586-10595.                                                                                                                  | 5.2  | 8         |
| 59 | Enzymolysis Reaction Kinetics and Liquid Chromatography High-Resolution Mass Spectrometry<br>Analysis of Ovalbumin Glycated with Microwave Radiation. Journal of Agricultural and Food<br>Chemistry, 2020, 68, 10596-10608.                                         | 5.2  | 7         |
| 60 | Ultrasound-Assisted Extraction Optimization of α-Glucosidase Inhibitors from Ceratophyllum<br>demersum L. and Identification of Phytochemical Profiling by HPLC-QTOF-MS/MS. Molecules, 2020, 25,<br>4507.                                                           | 3.8  | 7         |
| 61 | Insight into the Mechanism of Reduced IgG/IgE Binding Capacity in Ovalbumin as Induced by Glycation<br>with Monose Epimers through Liquid Chromatography and High-Resolution Mass Spectrometry.<br>Journal of Agricultural and Food Chemistry, 2020, 68, 6065-6075. | 5.2  | 28        |
| 62 | Preparation and characterization of TiO2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. International Journal of Biological Macromolecules, 2020, 154, 123-133.                                                                   | 7.5  | 83        |
| 63 | The reduction in the immunoglobulin G and immunoglobulin E binding capacity of β-lactoglobulin via spray-drying technology. Journal of Dairy Science, 2020, 103, 2993-3001.                                                                                         | 3.4  | 8         |
| 64 | Effects of coagulant promoter on the physical properties and microstructure of the mixed system of ultrafine fishbone and surimi. LWT - Food Science and Technology, 2020, 131, 109792.                                                                             | 5.2  | 7         |
| 65 | Conformational alteration and the glycated sites in ovalbumin during vacuum freeze-drying induced glycation: A study using conventional spectrometry and liquid chromatography–high resolution mass spectrometry. Food Chemistry, 2020, 318, 126519.                | 8.2  | 19        |
| 66 | Mechanism of the effect of 2, 2′-azobis (2-amidinopropane) dihydrochloride simulated lipid oxidation<br>on the IgG/IgE binding ability of ovalbumin. Food Chemistry, 2020, 327, 127037.                                                                             | 8.2  | 25        |
| 67 | Reduced IgE/IgG binding capacities of bovine α-Lactalbumin by glycation after dynamic high-pressure<br>microfluidization pretreatment evaluated by high resolution mass spectrometry. Food Chemistry,<br>2019, 299, 125166.                                         | 8.2  | 21        |
| 68 | Observation of the structural changes of αâ€lactalbumin induced by ultrasonic prior to glycated modification. Journal of Food Biochemistry, 2019, 43, e13017.                                                                                                       | 2.9  | 1         |
| 69 | Antioxidant, metabolic enzymes inhibitory ability of <i>Torreya grandis</i> kernels, and phytochemical profiling identified by HPLCâ€QTOFâ€MS/MS. Journal of Food Biochemistry, 2019, 43, e13043.                                                                   | 2.9  | 5         |
| 70 | Effect of extraction temperature on the gelling properties and identification of porcine gelatin. Food<br>Hydrocolloids, 2019, 92, 163-172.                                                                                                                         | 10.7 | 44        |
| 71 | Fish gelatin modifications: A comprehensive review. Trends in Food Science and Technology, 2019, 86, 260-269.                                                                                                                                                       | 15.1 | 183       |
| 72 | Insights into the Mechanism of Quercetin against BSA-Fructose Glycation by Spectroscopy and<br>High-Resolution Mass Spectrometry: Effect on Physicochemical Properties. Journal of Agricultural<br>and Food Chemistry, 2019, 67, 236-246.                           | 5.2  | 39        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The accumulation, histopathology, and intestinal microorganism effects of waterborne cadmium on<br>Carassius auratus gibelio. Fish Physiology and Biochemistry, 2019, 45, 231-243.                                                                             | 2.3 | 24        |
| 74 | Phytochemical profiles and screening of α-glucosidase inhibitors of four Acer species leaves with ultra-filtration combined with UPLC-QTOF-MS/MS. Industrial Crops and Products, 2019, 129, 156-168.                                                           | 5.2 | 33        |
| 75 | Influence of dynamic high pressure microfluidization on functional properties and structure of<br>gelatin from bighead carp ( <i>Hypophthalmichthys nobilis</i> ) scale. Journal of Food Processing and<br>Preservation, 2018, 42, e13607.                     | 2.0 | 29        |
| 76 | Investigation into allergenicity reduction and glycation sites of glycated Î <sup>2</sup> -lactoglobulin with ultrasound pretreatment by high-resolution mass spectrometry. Food Chemistry, 2018, 252, 99-107.                                                 | 8.2 | 65        |
| 77 | Investigation of conformation change of glycated ovalbumin obtained by Co-60 gamma-ray irradiation<br>under drying treatment. Innovative Food Science and Emerging Technologies, 2018, 47, 286-291.                                                            | 5.6 | 20        |
| 78 | Nelumbo nucifera leaf extracts inhibit the formation of advanced glycation end-products and mechanism revealed by Nano LC-Orbitrap-MS/MS. Journal of Functional Foods, 2018, 42, 254-261.                                                                      | 3.4 | 19        |
| 79 | Glycation of ovalbumin after highâ€intensity ultrasound pretreatment: effects on conformation,<br>immunoglobulin (Ig)G/IgE binding ability and antioxidant activity. Journal of the Science of Food and<br>Agriculture, 2018, 98, 3767-3773.                   | 3.5 | 52        |
| 80 | Liquid Chromatography High-Resolution Mass Spectrometry Identifies the Glycation Sites of Bovine<br>Serum Albumin Induced by <scp>d</scp> -Ribose with Ultrasonic Treatment. Journal of Agricultural<br>and Food Chemistry, 2018, 66, 563-570.                 | 5.2 | 26        |
| 81 | Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid<br>Droplets under Simulated Gastrointestinal Conditions. Journal of Agricultural and Food Chemistry,<br>2018, 66, 3930-3938.                                      | 5.2 | 36        |
| 82 | Gelation kinetics and characterization of enzymatically enhanced fish scale gelatin–pectin<br>coacervate. Journal of the Science of Food and Agriculture, 2018, 98, 1024-1032.                                                                                 | 3.5 | 11        |
| 83 | The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. LWT - Food Science and Technology, 2018, 89, 74-86.                                                                                                 | 5.2 | 32        |
| 84 | Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chemistry, 2018, 246, 428-436.                                                                                                               | 8.2 | 107       |
| 85 | The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS. Food and Function, 2018, 9, 417-425.                                                                       | 4.6 | 27        |
| 86 | Morphological and structural characteristics of rice amylose by dynamic highâ€pressure<br>microfluidization modification. Journal of Food Processing and Preservation, 2018, 42, e13764.                                                                       | 2.0 | 12        |
| 87 | Influence of Ultrasonication Prior to Glycation on the Physicochemical Properties of Bovine Serum<br>Albumin–galactose Conjugates. Food Science and Technology Research, 2018, 24, 35-44.                                                                      | 0.6 | 10        |
| 88 | A comparative analysis of the antigenicity and the major components formed from the<br>glucose/ovalbumin model system under microwave irradiation and conventional heating. Journal of<br>Food Processing and Preservation, 2018, 42, e13818.                  | 2.0 | 4         |
| 89 | The Mechanism of Decreased IgG/IgE-Binding of Ovalbumin by Preheating Treatment Combined with<br>Glycation Identified by Liquid Chromatography and High-Resolution Mass Spectrometry. Journal of<br>Agricultural and Food Chemistry, 2018, 66, 10693-10702.    | 5.2 | 30        |
| 90 | Ultrasonic Pretreatment Combined with Dry-State Glycation Reduced the Immunoglobulin<br>E/Immunoglobulin G-Binding Ability of α-Lactalbumin Revealed by High-Resolution Mass Spectrometry.<br>Journal of Agricultural and Food Chemistry, 2018, 66, 5691-5698. | 5.2 | 34        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | LC-Orbitrap MS analysis of the glycation modification effects of ovalbumin during freeze-drying with three reducing sugar additives. Food Chemistry, 2018, 268, 171-178.                                                                                                                     | 8.2  | 23        |
| 92  | Physicochemical and rheological properties of modified rice amylose by dynamic high-pressure microfluidization. International Journal of Food Properties, 2017, 20, 734-744.                                                                                                                 | 3.0  | 15        |
| 93  | Effect of High Intensity Ultrasound on the Gel and Structural Properties of <i>Ctenopharyngodon<br/>idellus</i> Myofibrillar Protein. Journal of Food Biochemistry, 2017, 41, e12288.                                                                                                        | 2.9  | 14        |
| 94  | Identification of glycated sites in ovalbumin under freeze-drying processing by liquid chromatography high-resolution mass spectrometry. Food Chemistry, 2017, 226, 1-7.                                                                                                                     | 8.2  | 41        |
| 95  | Monitoring of the functional properties and unfolding change of Ovalbumin after DHPM treatment by HDX and FTICR MS. Food Chemistry, 2017, 227, 413-421.                                                                                                                                      | 8.2  | 42        |
| 96  | Extraction optimization, structural characterization and bioactivity evaluation of triterpenoids from hawthorn ( <i>Crataegus cuneata</i> ) fruits. Journal of Food Biochemistry, 2017, 41, e12377.                                                                                          | 2.9  | 11        |
| 97  | Fabrication and characterization of nanoemulsion-coated microgels: Electrostatic deposition of lipid droplets on alginate beads. Food Hydrocolloids, 2017, 71, 149-157.                                                                                                                      | 10.7 | 19        |
| 98  | Jackfruit ( Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a -glucosidase<br>inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chemistry,<br>2017, 234, 303-313.                                                            | 8.2  | 76        |
| 99  | Mechanism and kinetics of tyrosinase inhibition by glycolic acid: a study using conventional spectroscopy methods and hydrogen/deuterium exchange coupling with mass spectrometry. Food and Function, 2017, 8, 122-131.                                                                      | 4.6  | 14        |
| 100 | Influence of soy lecithin concentration on the physical properties of whey protein isolate-stabilized emulsion and microcapsule formation. Journal of Food Engineering, 2017, 207, 73-80.                                                                                                    | 5.2  | 74        |
| 101 | Influence of <i>inÂvitro</i> gastrointestinal digestion on the bioavailability and antioxidant activity of polyphenols from <i>Ipomoea batatas</i> leaves. International Journal of Food Science and Technology, 2017, 52, 1131-1137.                                                        | 2.7  | 13        |
| 102 | Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. Journal of Food Science and Technology, 2017, 54, 1256-1265.                                                                                                | 2.8  | 58        |
| 103 | Rheological and structural properties of fish scales gelatin: Effects of conventional and ultrasound-assisted extraction. International Journal of Food Properties, 2017, , 1-11.                                                                                                            | 3.0  | 16        |
| 104 | The Reduction in the IgE-Binding Ability of β-Lactoglobulin by Dynamic High-Pressure Microfluidization<br>Coupled with Glycation Treatment Revealed by High-Resolution Mass Spectrometry. Journal of<br>Agricultural and Food Chemistry, 2017, 65, 6179-6187.                                | 5.2  | 22        |
| 105 | Mechanism of Reduction in IgG and IgE Binding of β-Lactoglobulin Induced by Ultrasound Pretreatment<br>Combined with Dry-State Glycation: A Study Using Conventional Spectrometry and High-Resolution<br>Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 8018-8027. | 5.2  | 52        |
| 106 | Improved Antioxidant Activity and Glycation of α-Lactalbumin after Ultrasonic Pretreatment Revealed<br>by High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65,<br>10317-10324.                                                                           | 5.2  | 30        |
| 107 | Characterization and emulsifying properties of octenyl succinate anhydride modified Acacia seyal gum<br>(gum arabic). Food Hydrocolloids, 2017, 65, 10-16.                                                                                                                                   | 10.7 | 61        |
| 108 | Highâ€intensity ultrasound enhances the immunoglobulin (Ig)G and <scp>IgE</scp> binding of ovalbumin. Journal of the Science of Food and Agriculture, 2017, 97, 2714-2720.                                                                                                                   | 3.5  | 46        |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Characterization of Volatile Compounds in Grass Carp <i>(Ctenopharyngodon idellus)</i> Soup<br>Cooked Using a Traditional Chinese Method by GC-MS. Journal of Food Processing and Preservation,<br>2017, 41, e12995.                    | 2.0  | 25        |
| 110 | Effect of Frying on Fatty Acid Profile, Free Amino Acids and Volatile Compounds of Grass Carp<br>( <i>Ctenopharyngodon idellus</i> ) Fillets. Journal of Food Processing and Preservation, 2017, 41,<br>e13088.                         | 2.0  | 14        |
| 111 | Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydrate Polymers, 2017, 156, 294-302.                                                                              | 10.2 | 99        |
| 112 | Immunogenic and structural properties of ovalbumin treated by pulsed electric fields. International<br>Journal of Food Properties, 2017, 20, S3164-S3176.                                                                               | 3.0  | 33        |
| 113 | Promotion of foam properties of egg white protein by subcritical water pre-treatment and fish scales gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512, 171-177.                                     | 4.7  | 36        |
| 114 | Antioxidant activity, α-glucosidase inhibition, and phytochemical fingerprints ofAnoectochilus<br>roxburghiiformula tea residues with HPLC-QTOF-MS/MS. Journal of Food Biochemistry, 2017, 41, e12402.                                  | 2.9  | 10        |
| 115 | Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on<br>IgE-binding capacity and conformation. Food Research International, 2016, 89, 882-888.                                              | 6.2  | 45        |
| 116 | Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chemistry, 2016, 208, 61-67.                                                    | 8.2  | 103       |
| 117 | Antioxidant activities and polyphenols of sweet potato (Ipomoea batatas L.) leaves extracted with solvents of various polarities. Food Bioscience, 2016, 15, 11-18.                                                                     | 4.4  | 81        |
| 118 | The adsorption of lead(II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber. Journal of Food Science and Technology, 2016, 53, 2532-2539.                                                       | 2.8  | 26        |
| 119 | Antioxidant Activity and Phenolic Acids Profiles of Artemisia Selengensis Turcz Extracted with Various Methods by HPLC-QTOF-MS/MS. Journal of Food Biochemistry, 2016, 40, 603-612.                                                     | 2.9  | 6         |
| 120 | The effect of ginger and garlic addition during cooking on the volatile profile of grass carp<br>(Ctenopharyngodon idella) soup. Journal of Food Science and Technology, 2016, 53, 3253-3270.                                           | 2.8  | 17        |
| 121 | Antihyperglycemic, antioxidant activities of two Acer palmatum cultivars, and identification of phenolics profile by UPLC-QTOF-MS/MS: New natural sources of functional constituents. Industrial Crops and Products, 2016, 89, 522-532. | 5.2  | 57        |
| 122 | Quality evaluation of peony seed oil spray-dried in different combinations of wall materials during encapsulation and storage. Journal of Food Science and Technology, 2016, 53, 2597-2605.                                             | 2.8  | 8         |
| 123 | Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment. Food Chemistry, 2016, 210, 141-147.                                                                 | 8.2  | 22        |
| 124 | Data on the peptide mapping and MS identification for phosphorylated peptide. Data in Brief, 2016, 8, 26-30.                                                                                                                            | 1.0  | 0         |
| 125 | New Gallotannin and other Phytochemicals from Sycamore Maple ( <i>Acer pseudoplatanus</i> )<br>Leaves. Natural Product Communications, 2015, 10, 1934578X1501001.                                                                       | 0.5  | 11        |
| 126 | Effect of γ-irradiation on the physicochemical properties and structure of fish myofibrillar proteins.<br>Radiation Physics and Chemistry, 2015, 109, 70-72.                                                                            | 2.8  | 54        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Comparison of different methods for extracting polyphenols from Ipomoea batatas leaves, and<br>identification of antioxidant constituents by HPLC-QTOF-MS2. Food Research International, 2015, 70,<br>101-109.                         | 6.2  | 46        |
| 128 | Metabolic profiling of antioxidants constituents in Artemisia selengensis leaves. Food Chemistry, 2015, 186, 123-132.                                                                                                                  | 8.2  | 45        |
| 129 | Response surface optimization and physicochemical properties of polysaccharides from Nelumbo<br>nucifera leaves. International Journal of Biological Macromolecules, 2015, 74, 103-110.                                                | 7.5  | 55        |
| 130 | Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology, 2015, 52, 2166-2174.                                           | 2.8  | 91        |
| 131 | Probing the conformational changes of ovalbumin after glycation using HDX-MS. Food Chemistry, 2015, 166, 62-67.                                                                                                                        | 8.2  | 14        |
| 132 | Optimization of instant edible films based on dietary fiber processed with dynamic high pressure microfluidization for barrier properties and water solubility. LWT - Food Science and Technology, 2015, 60, 603-608.                  | 5.2  | 19        |
| 133 | A high throughput screening assay for identifying glycation inhibitors on MALDI-TOF target. Food<br>Chemistry, 2015, 170, 160-168.                                                                                                     | 8.2  | 3         |
| 134 | Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-state. Journal of Food Science and Technology, 2015, 52, 1453-1461.                                                      | 2.8  | 36        |
| 135 | New Gallotannin and other Phytochemicals from Sycamore Maple (Acer pseudoplatanus) Leaves.<br>Natural Product Communications, 2015, 10, 1977-80.                                                                                       | 0.5  | 8         |
| 136 | Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen–deuterium<br>exchange and mass spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 7243-7251.                                              | 3.7  | 15        |
| 137 | Gelatin Quantification by Oxygen-18 Labeling and Liquid Chromatography–High-Resolution Mass<br>Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 11840-11853.                                                        | 5.2  | 20        |
| 138 | Correlation Analysis between Color Parameters and Sensory Characteristics of Rice with Different<br>Milling Degrees. Journal of Food Processing and Preservation, 2014, 38, 1890-1897.                                                 | 2.0  | 12        |
| 139 | Effect of fermentation and dynamic high pressure microfluidization on dietary fibre of soybean residue. Journal of Food Science and Technology, 2014, 51, 3285-3292.                                                                   | 2.8  | 40        |
| 140 | Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 2014, 92, 30-37.                                                                             | 3.6  | 217       |
| 141 | Effect of ammonium sulfate fractional precipitation on gel strength and characteristics of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Food Hydrocolloids, 2014, 36, 173-180.                                        | 10.7 | 65        |
| 142 | Functional properties and structure changes of soybean protein isolate after subcritical water treatment. Journal of Food Science and Technology, 2014, 52, 3412-21.                                                                   | 2.8  | 23        |
| 143 | Solvent optimization, antioxidant activity, and chemical characterization of extracts from Artemisia selengnesis Turcz. Industrial Crops and Products, 2014, 56, 223-230.                                                              | 5.2  | 38        |
| 144 | Improved Glycation after Ultrasonic Pretreatment Revealed by High-Performance Liquid<br>Chromatography–Linear Ion Trap/Orbitrap High-Resolution Mass Spectrometry. Journal of<br>Agricultural and Food Chemistry, 2014, 62, 2522-2530. | 5.2  | 54        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Structure and Antioxidant Activity of Milk Model Systems after Microwave Heating. Food Science and Technology Research, 2014, 20, 345-355.                                                                                                         | 0.6  | 7         |
| 146 | Effect of dynamic highâ€pressure microfluidization on the morphology characteristics and physicochemical properties of maize amylose. Starch/Staerke, 2013, 65, 390-397.                                                                           | 2.1  | 40        |
| 147 | Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food and Bioproducts Processing, 2013, 91, 1-6.                                                      | 3.6  | 38        |
| 148 | Glycation promoted by dynamic high pressure microfluidisation pretreatment revealed by high resolution mass spectrometry. Food Chemistry, 2013, 141, 3250-3259.                                                                                    | 8.2  | 42        |
| 149 | Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry. Food Chemistry, 2013, 141, 985-991.                                                                                                 | 8.2  | 38        |
| 150 | Increase of Ovalbumin Glycation by the Maillard Reaction after Disruption of the Disulfide Bridge<br>Evaluated by Liquid Chromatography and High Resolution Mass Spectrometry. Journal of Agricultural<br>and Food Chemistry, 2013, 61, 2253-2262. | 5.2  | 50        |
| 151 | Characteristics and antioxidant activities of ovalbumin glycated with different saccharides under heat moisture treatment. Food Research International, 2012, 48, 866-872.                                                                         | 6.2  | 92        |
| 152 | Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of lentinan.<br>International Journal of Biological Macromolecules, 2012, 51, 926-932.                                                                      | 7.5  | 49        |
| 153 | Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism.<br>Food Hydrocolloids, 2012, 28, 121-129.                                                                                                        | 10.7 | 186       |
| 154 | Relationship between Functional Properties and Aggregation Changes of Whey Protein Induced by<br>High Pressure Microfluidization. Journal of Food Science, 2011, 76, E341-7.                                                                       | 3.1  | 67        |
| 155 | Effect of dynamic high-pressure microfluidization at different temperatures on the antigenic response of bovine I²-lactoglobulin. European Food Research and Technology, 2011, 233, 95-102.                                                        | 3.3  | 30        |
| 156 | The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin. Food Chemistry, 2010, 123, 616-621.                                                                                                  | 8.2  | 94        |
| 157 | Pectin Stabilized Fish Gelatin Emulsions: Physical Stability, Rheological, and Interaction Properties.<br>Frontiers in Nutrition, 0, 9, .                                                                                                          | 3.7  | 3         |
| 158 | From Function to Metabolome: Metabolomic Analysis Reveals the Effect of Probiotic Fermentation on<br>the Chemical Compositions and Biological Activities of Perilla frutescens Leaves. Frontiers in<br>Nutrition, 0, 9, .                          | 3.7  | 10        |