
Jian-Ping Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185755/publications.pdf Version: 2024-02-01

ILAN-PINC WEN

#	Article	IF	CITATIONS
1	Effects of different surfactants on the degradation of petroleum hydrocarbons by mixedâ€bacteria. Journal of Chemical Technology and Biotechnology, 2022, 97, 208-217.	3.2	6
2	Increasing fengycin production by strengthening the fatty acid synthesis pathway and optimizing fermentation conditions. Biochemical Engineering Journal, 2022, 177, 108235.	3.6	22
3	Enhancing the capability of <i>Klebsiella pneumoniae</i> to produce 1, 3â€propanediol by overexpression and regulation through CRISPRâ€dCas9. Microbial Biotechnology, 2022, 15, 2112-2125.	4.2	8
4	Production of fengycin from d-xylose through the expression and metabolic regulation of the Dahms pathway. Applied Microbiology and Biotechnology, 2022, 106, 2557-2567.	3.6	5
5	Metabolic engineering of Bacillus subtilis 168 for the utilization of arabinose to synthesize the antifungal lipopeptide fengycin. Biochemical Engineering Journal, 2022, 185, 108528.	3.6	9
6	Enhanced ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by employing polyhydroxybutyrate as an intracellular carbon reservoir and optimizing carbon addition. Microbial Cell Factories, 2021, 20, 70.	4.0	9
7	Increasing the Ascomycin Yield by Relieving the Inhibition of Acetyl/Propionyl-CoA Carboxylase by the Signal Transduction Protein GlnB. Frontiers in Microbiology, 2021, 12, 684193.	3.5	1
8	Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microbial Cell Factories, 2021, 20, 178.	4.0	20
9	Metabolic engineering of Bacillus subtilis based on genome-scale metabolic model to promote fengycin production. 3 Biotech, 2021, 11, 448.	2.2	15
10	Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol. Frontiers in Microbiology, 2021, 12, 770109.	3.5	3
11	Comparison of bacterial community structure and function under different petroleum hydrocarbon degradation conditions. Bioprocess and Biosystems Engineering, 2020, 43, 303-313.	3.4	22
12	Hyper-secretion mechanism exploration of a heterologous creatinase in Bacillus subtilis. Biochemical Engineering Journal, 2020, 153, 107419.	3.6	4
13	A bioaugmentation agent allowing the advanced treatment of refractory refinery wastewater in a biological aerated filter and analysis of its microbial community. Journal of Chemical Technology and Biotechnology, 2020, 95, 1258-1269.	3.2	4
14	Microbial community dynamics and functional responses that contribute to tolerance of high concentrations of petroleum hydrocarbon. Journal of Chemical Technology and Biotechnology, 2020, 95, 1361-1371.	3.2	3
15	Comparative Study on Different Remediation Strategies Applied in Petroleum-Contaminated Soils. International Journal of Environmental Research and Public Health, 2020, 17, 1606.	2.6	33
16	Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Microbial Cell Factories, 2020, 19, 32.	4.0	15
17	Identification of the regulon FkbN for ascomycin biosynthesis and its interspecies conservation analysis as LAL family regulator. Biochemical Engineering Journal, 2019, 151, 107349.	3.6	3
18	Combining metabolic flux analysis and adaptive evolution to enhance lipase production in <i>Bacillus subtilis</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1091-1101.	3.0	9

#	Article	IF	CITATIONS
19	Negative regulation of bleomycins biosynthesis by ArsR/SmtB family repressor BlmR in Streptomyces verticillus. Applied Microbiology and Biotechnology, 2019, 103, 6629-6644.	3.6	6
20	Enhancing the production of tacrolimus by engineering target genes identified in important primary and secondary metabolic pathways and feeding exogenous precursors. Bioprocess and Biosystems Engineering, 2019, 42, 1081-1098.	3.4	7
21	Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology. Critical Reviews in Biotechnology, 2018, 38, 1106-1120.	9.0	13
22	Manipulating the expression of SARP family regulator BulZ and its target gene product to increase tacrolimus production. Applied Microbiology and Biotechnology, 2018, 102, 4887-4900.	3.6	17
23	Rational design of a synthetic Entner–Doudoroff pathway for enhancing glucose transformation to isobutanol in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 187-199.	3.0	23
24	Novel osmotic stress control strategy for improved pneumocandin B0 production in Glarea lozoyensis combined with a mechanistic analysis at the transcriptome level. Applied Microbiology and Biotechnology, 2018, 102, 10729-10742.	3.6	10
25	Enhancement of Pneumocandin B0 Production in Glarea lozoyensis by Low-Temperature Adaptive Laboratory Evolution. Frontiers in Microbiology, 2018, 9, 2788.	3.5	6
26	Effects of Cotton Seed Powder as the Seed Medium Nitrogen Source on the Morphology and Pneumocandin B0 Yield of Glarea lozoyensis. Frontiers in Microbiology, 2018, 9, 2352.	3.5	7
27	Metabolomic and proteomic analysis of <scp>d</scp> -lactate-producing <i>Lactobacillus delbrueckii</i> under various fermentation conditions. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 681-696.	3.0	16
28	Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol. Bioresource Technology, 2018, 267, 599-607.	9.6	22
29	Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 2018, 18, 5.	3.3	49
30	Metabolomics profiling reveals the mechanism of increased pneumocandin B0 production by comparing mutant and parent strains. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 767-780.	3.0	12
31	Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. Applied Microbiology and Biotechnology, 2017, 101, 2447-2465.	3.6	32
32	Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics. World Journal of Microbiology and Biotechnology, 2017, 33, 101.	3.6	6
33	Enhancement of rapamycin production by metabolic engineering in <i>Streptomyces hygroscopicus</i> based on genome-scale metabolic model. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 259-270.	3.0	22
34	A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnology Letters, 2017, 39, 1237-1244.	2.2	16
35	A genome-scale dynamic flux balance analysis model of Streptomyces tsukubaensis NRRL18488 to predict the targets for increasing FK506 production. Biochemical Engineering Journal, 2017, 123, 45-56.	3.6	26
36	Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. Applied Microbiology and Biotechnology, 2017, 101, 4581-4592.	3.6	26

#	Article	IF	CITATIONS
37	Engineering a new metabolic pathway for itaconate production in Pichia stipitis from xylose. Biochemical Engineering Journal, 2017, 126, 101-108.	3.6	5
38	Combining metabolomics and network analysis to improve tacrolimus production in <i>Streptomyces tsukubaensis</i> using different exogenous feedings. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1527-1540.	3.0	20
39	Identification of a new gene yecC involved in threonine export in Escherichia coli. FEMS Microbiology Letters, 2017, 364, .	1.8	5
40	Integration of parallel ¹³ Câ€labeling experiments and in silico pathway analysis for enhanced production of ascomycin. Biotechnology and Bioengineering, 2017, 114, 1036-1044.	3.3	14
41	Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. Microbial Cell Factories, 2017, 16, 169.	4.0	25
42	Integrating multi-omics analyses of Nonomuraea dietziae to reveal the role of soybean oil in [(4′-OH)MeLeu]4-CsA overproduction. Microbial Cell Factories, 2017, 16, 120.	4.0	1
43	Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose. Bioresource Technology, 2016, 222, 24-32.	9.6	13
44	Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production. Bioprocess and Biosystems Engineering, 2016, 39, 1267-1280.	3.4	10
45	Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum. Microbial Cell Factories, 2016, 15, 36.	4.0	15
46	Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microbial Cell Factories, 2015, 14, 92.	4.0	72
47	Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli. Biotechnology for Biofuels, 2015, 8, 108.	6.2	32
48	A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresource Technology, 2015, 180, 119-127.	9.6	34
49	Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnology Letters, 2015, 37, 899-906.	2.2	68
50	Engineering Scheffersomyces stipitis for fumaric acid production from xylose. Bioresource Technology, 2015, 187, 246-254.	9.6	39
51	Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by <i>Streptomyces hygroscopicus</i> . Journal of Industrial Microbiology and Biotechnology, 2015, 42, 949-963.	3.0	25
52	Reduction of foaming and enhancement of ascomycin production in rational Streptomyces hygroscopicus fermentation. Chinese Journal of Chemical Engineering, 2015, 23, 1178-1182.	3.5	2
53	Purification of high ammonia wastewater in a biofilm airlift loop bioreactor with microbial communities analysis. World Journal of Microbiology and Biotechnology, 2015, 31, 49-57.	3.6	5
54	Model-Driven Redox Pathway Manipulation for Improved Isobutanol Production in Bacillus subtilis Complemented with Experimental Validation and Metabolic Profiling Analysis. PLoS ONE, 2014, 9, e93815.	2.5	28

#	Article	IF	CITATIONS
55	Analysis of ascomycin production enhanced by shikimic acid resistance and addition in Streptomyces hygroscopicus var. ascomyceticus. Biochemical Engineering Journal, 2014, 82, 124-133.	3.6	20
56	Metabolic profiling analysis of the degradation of phenol and 4-chlorophenol by Pseudomonas sp. cbp1-3. Biochemical Engineering Journal, 2014, 90, 316-323.	3.6	15
57	Comparative Metabolomic-Based Metabolic Mechanism Hypothesis for Microbial Mixed Cultures Utilizing Cane Molasses Wastewater for Higher 2-Phenylethanol Production. Journal of Agricultural and Food Chemistry, 2014, 62, 9927-9935.	5.2	13
58	Enhancement of ascomycin production in <i>Streptomyces hygroscopicus</i> var. <i>ascomyceticus</i> by combining resin HP20 addition and metabolic profiling analysis. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1365-1374.	3.0	19
59	Improved FK506 production by the precursors and product-tolerant mutant of <i>Streptomyces tsukubaensis</i> based on genome shuffling and dynamic fed-batch strategies. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1131-1143.	3.0	23
60	Coupled cell morphology investigation and metabolomics analysis improves rapamycin production in Streptomyces hygroscopicus. Biochemical Engineering Journal, 2014, 91, 186-195.	3.6	12
61	Enhancement of FK506 production by engineering secondary pathways of <i>Streptomyces tsukubaensis</i> and exogenous feeding strategies. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1023-1037.	3.0	54
62	Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microbial Cell Factories, 2013, 12, 52.	4.0	67
63	Femtosecond laser-based mutagenesis strategy for micronomicin production enhancement of Micromonospora sagamiensis ATCC 21826. World Journal of Microbiology and Biotechnology, 2013, 29, 1121-1127.	3.6	3
64	Enhanced FK506 production in <i>Streptomyces tsukubaensis</i> by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnology and Bioengineering, 2013, 110, 2717-2730.	3.3	74
65	Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresource Technology, 2013, 137, 1-8.	9.6	34
66	Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus. Applied Microbiology and Biotechnology, 2013, 97, 5329-5341.	3.6	22
67	Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Biotechnology Letters, 2012, 34, 2253-2258.	2.2	12
68	Engineering a Metabolic Pathway for Isobutanol Biosynthesis in Bacillus subtilis. Applied Biochemistry and Biotechnology, 2012, 168, 1-9.	2.9	22
69	Substrate interactions and kinetics study of phenolic compounds biodegradation by Pseudomonas sp. cbp1-3. Biochemical Engineering Journal, 2012, 67, 156-166.	3.6	21
70	Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microbial Cell Factories, 2012, 11, 101.	4.0	53
71	Key technologies for the industrial production of fumaric acid by fermentation. Biotechnology Advances, 2012, 30, 1685-1696.	11.7	128
72	Higher-level production of ascomycin (FK520) by Streptomyces hygroscopicus var. ascomyceticus irradiated by femtosecond laser. Biotechnology and Bioprocess Engineering, 2012, 17, 770-779.	2.6	16

#	Article	IF	CITATIONS
73	In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Applied Microbiology and Biotechnology, 2012, 94, 637-649.	3.6	46
74	Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresource Technology, 2012, 114, 610-615.	9.6	34
75	Transient CFD modeling of toluene waste gas biodegradation in a gas–liquid–solid three-phase airlift loop reactor by immobilized Pseudomonas putida. Chemical Engineering Journal, 2011, 172, 735-745.	12.7	13
76	Enhancement of daptomycin production in Streptomyces roseosporus LC-51 by manipulation of cofactors concentration in the fermentation culture. World Journal of Microbiology and Biotechnology, 2011, 27, 1859-1868.	3.6	7
77	D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2011, 27, 2117-2124.	3.6	12
78	Purification of high strength wastewater originating from bioethanol production with simultaneous biogas production. World Journal of Microbiology and Biotechnology, 2011, 27, 2711-2722.	3.6	13
79	Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Applied Microbiology and Biotechnology, 2011, 91, 577-589.	3.6	130
80	Kinetic Analysis and Modeling of Daptomycin Batch Fermentation by Streptomyces roseosporus. Applied Biochemistry and Biotechnology, 2011, 163, 453-462.	2.9	12
81	Strain Improvement of Streptomyces roseosporus for Daptomycin Production by Rational Screening of He–Ne Laser and NTG Induced Mutants and Kinetic Modeling. Applied Biochemistry and Biotechnology, 2011, 163, 729-743.	2.9	42
82	Metabolic Flux Analysis and Principal Nodes Identification for Daptomycin Production Improvement by Streptomyces roseosporus. Applied Biochemistry and Biotechnology, 2011, 165, 1725-1739.	2.9	24
83	Modelling of phenol biodegradation by <i>Candida tropicalis</i> immobilised in alginate gel beads. Canadian Journal of Chemical Engineering, 2011, 89, 1566-1574.	1.7	2
84	Extreme-thermophilic biohydrogen production from lignocellulosic bioethanol distillery wastewater with community analysis of hydrogen-producing microflora. International Journal of Hydrogen Energy, 2011, 36, 8243-8251.	7.1	27
85	Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biochemical Engineering Journal, 2010, 49, 61-67.	3.6	35
86	CFD modelling of phenol biodegradation by immobilized Candida tropicalis in a gas–liquid–solid three-phase bubble column. Chemical Engineering Journal, 2010, 157, 451-465.	12.7	22
87	Transient modeling of toluene waste gas biotreatment in a gas–liquid airlift loop reactor. Chemical Engineering Journal, 2010, 159, 1-10.	12.7	31
88	Encapsulation of lactate dehydrogenase in carbon nanotube doped alginate–chitosan capsules. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 102-107.	1.8	13
89	Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 809-814.	3.0	21
90	Improvement of Saccharopolyspora spinosa and the Kinetic Analysis for Spinosad Production. Applied Biochemistry and Biotechnology, 2009, 152, 440-448.	2.9	17

#	Article	IF	CITATIONS
91	CFD modelling of transient performance of toluene emissions biodegradation in bubble column. Biochemical Engineering Journal, 2009, 48, 42-50.	3.6	10
92	CFD Modeling of Immobilized Phenol Biodegradation in Three-Phase Airlift Loop Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 4514-4529.	3.7	7
93	Anaerobic biodegradation of phenol by Candida albicans PDY-07 in the presence of 4-chlorophenol. World Journal of Microbiology and Biotechnology, 2008, 24, 2685-2691.	3.6	20
94	Biocomposite of double-walled carbon nanotube-doped alginate gel for biomaterial immobilization. Composites Science and Technology, 2008, 68, 1297-1303.	7.8	12
95	Treatment of Catalyst Wastewater in a Three-Phase Flow Airlift Loop Bioreactor. Environmental Engineering Science, 2007, 24, 716-723.	1.6	0
96	Local Hydrodynamics Modeling of a Gasâ^'Liquidâ^'Solid Three-Phase Airlift Loop Reactor. Industrial & Engineering Chemistry Research, 2007, 46, 5210-5220.	3.7	27
97	Modeling of local dynamic behavior of phenol degradation in an internal loop airlift bioreactor by yeastCandida tropicalis. Biotechnology and Bioengineering, 2007, 97, 251-264.	3.3	27
98	Local hydrodynamics modeling of a gas–liquid–solid threeâ€phase bubble column. AICHE Journal, 2007, 53, 2221-2231.	3.6	35
99	Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 1059-1066.	7.1	22
100	Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. Journal of Hazardous Materials, 2007, 147, 672-676.	12.4	88
101	Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis. Biodegradation, 2007, 18, 719-729.	3.0	34
102	Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochemistry, 2007, 42, 510-517.	3.7	115
103	Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He–Ne laser irradiation. Chemosphere, 2006, 65, 1236-1241.	8.2	15
104	Modeling of batch phenol biodegradation in internal loop airlift bioreactor with gas recirculation by Candida tropicalis. Chemical Engineering Science, 2006, 61, 3463-3475.	3.8	31
105	Biodegradation of 4-Chlorophenol by Candida albicans PDY-07 under Anaerobic Conditions. Chinese Journal of Chemical Engineering, 2006, 14, 790-795.	3.5	25
106	A pilot study for nitrifying treatment of wastewater from fertilizer production using a gas–liquid–solid three-phase flow airlift loop bioreactor. Journal of Chemical Technology and Biotechnology, 2006, 81, 817-822.	3.2	2
107	Modeling for batch phenol biodegradation with immobilizedAlcaligenes faecalis. AICHE Journal, 2006, 52, 1294-1303.	3.6	12
108	Modeling for local dynamic behaviors of phenol biodegradation in bubble columns. AICHE Journal, 2006, 52, 2864-2875.	3.6	9

#	Article	IF	CITATIONS
109	Local hydrodynamics of gas–liquid-nanoparticles three-phase fluidization. Chemical Engineering Science, 2005, 60, 6887-6898.	3.8	46
110	A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochemical Engineering Journal, 2005, 27, 1-7.	3.6	125
111	Characteristics of three-phase internal loop airlift bioreactors with complete gas recirculation for non-Newtonian fluids. Bioprocess and Biosystems Engineering, 2005, 27, 193-205.	3.4	11
112	Modeling and Simulation of Gas-Liquid-Solid Three-Phase Fluidization. Chemical Engineering Communications, 2005, 192, 941-955.	2.6	11
113	Heat Transfer and Pressure Drop of Vapor-Liquid-Solid Three-Phase Boiling Flow of Binary Mixtures. Chemical Engineering Communications, 2005, 192, 956-971.	2.6	3
114	Preparation of sorbitol fromD-glucose hydrogenation in gas–liquid–solid three-phase flow airlift loop reactor. Journal of Chemical Technology and Biotechnology, 2004, 79, 403-406.	3.2	17
115	Effect of Li diffusion on the domain inversion of LiNbO3 prepared by vapor transport equilibration. Applied Physics Letters, 2002, 81, 700-702.	3.3	14
116	Extractive fermentation for fumaric acid production by <i>Rhizopus oryzae</i> . Separation Science and Technology, 0, , 1-9.	2.5	5