
## Harikrishna Nakshatri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1857165/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Acquisition, processing, and single-cell analysis of normal human breast tissues from a biobank. STAR<br>Protocols, 2022, 3, 101047.                                                             | 0.5 | 6         |
| 2  | Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Science Advances, 2022, 8, eabh3375.                                               | 4.7 | 27        |
| 3  | Aberrant epigenetic and transcriptional events associated with breast cancer risk. Clinical Epigenetics, 2022, 14, 21.                                                                           | 1.8 | 14        |
| 4  | FAM83A is a potential biomarker for breast cancer initiation. Biomarker Research, 2022, 10, 8.                                                                                                   | 2.8 | 9         |
| 5  | Abstract P3-14-13: Metabolic links to socioeconomic stresses uniquely affecting race in normal breast tissue at risk for breast cancer. Cancer Research, 2022, 82, P3-14-13-P3-14-13.            | 0.4 | 0         |
| 6  | Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle<br>functional limitations. Molecular Therapy - Nucleic Acids, 2022, 28, 231-248.                 | 2.3 | 5         |
| 7  | Agingâ€associated skeletal muscle defects in HER2/Neu transgenic mammary tumour model. JCSM Rapid<br>Communications, 2021, 4, 24-39.                                                             | 0.6 | 5         |
| 8  | Nonlinear relationship between chromatin accessibility and estradiol-regulated gene expression.<br>Oncogene, 2021, 40, 1332-1346.                                                                | 2.6 | 12        |
| 9  | Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers, 2021, 13, 369.                                                                                                 | 1.7 | 35        |
| 10 | A Priori Activation of Apoptosis Pathways of Tumor (AAAPT) technology: Development of targeted apoptosis initiators for cancer treatment. PLoS ONE, 2021, 16, e0225869.                          | 1.1 | 4         |
| 11 | Deubiquitinase UCHL1 Maintains Protein Homeostasis through the PSMA7–APEH–Proteasome Axis in<br>High-grade Serous Ovarian Carcinoma. Molecular Cancer Research, 2021, 19, 1168-1181.             | 1.5 | 11        |
| 12 | A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. Cell Reports Medicine, 2021, 2, 100219.                                       | 3.3 | 48        |
| 13 | Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4. Bone Research, 2021, 9, 26.                                                              | 5.4 | 4         |
| 14 | Overexpression of Lrp5 enhanced the anti-breast cancer effects of osteocytes in bone. Bone Research, 2021, 9, 32.                                                                                | 5.4 | 25        |
| 15 | Bidirectional Regulatory Cross-Talk between Cell Context and Genomic Aberrations Shapes Breast<br>Tumorigenesis. Molecular Cancer Research, 2021, 19, 1802-1817.                                 | 1.5 | 6         |
| 16 | Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced<br>Skeletal Muscle Defects. Endocrinology, 2021, 162, .                                              | 1.4 | 4         |
| 17 | Building a virtual summer research experience in cancer for high school and early undergraduate students: lessons from the COVID-19 pandemic. BMC Medical Education, 2021, 21, 422.              | 1.0 | 7         |
| 18 | Antitumor properties of novel sesquiterpene lactone analogs as NFκB inhibitors that bind to the IKKβ<br>ubiquitin-like domain (ULD). European Journal of Medicinal Chemistry, 2021, 224, 113675. | 2.6 | 4         |

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancerâ€Like<br>Phenotype. Advanced Science, 2021, 8, e2100128.                                              | 5.6  | 19        |
| 20 | Cell competition and tumor heterogeneity. Seminars in Cancer Biology, 2020, 63, 1-10.                                                                                                            | 4.3  | 26        |
| 21 | regSNPs-ASB: A Computational Framework for Identifying Allele-Specific Transcription Factor Binding<br>From ATAC-seq Data. Frontiers in Bioengineering and Biotechnology, 2020, 8, 886.          | 2.0  | 5         |
| 22 | Breast Cancer Cell Detection and Characterization from Breast Milk–Derived Cells. Cancer Research, 2020, 80, 4828-4839.                                                                          | 0.4  | 11        |
| 23 | In vivoÂmodeling of metastatic human high-grade serous ovarian cancer in mice. PLoS Genetics, 2020, 16,<br>e1008808.                                                                             | 1.5  | 27        |
| 24 | Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent<br>fashion. Bone Research, 2020, 8, 9.                                                           | 5.4  | 40        |
| 25 | Systemic Actions of Breast Cancer Facilitate Functional Limitations. Cancers, 2020, 12, 194.                                                                                                     | 1.7  | 9         |
| 26 | Breast Heterogeneity: Obstacles to Developing Universal Biomarkers of Breast Cancer Initiation and Progression. Journal of the American College of Surgeons, 2020, 231, 85-96.                   | 0.2  | 2         |
| 27 | Flower isoforms promote competitive growth inÂcancer. Nature, 2019, 572, 260-264.                                                                                                                | 13.7 | 96        |
| 28 | Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nature Communications, 2019, 10, 2860.                                 | 5.8  | 18        |
| 29 | Dual TGFβ/BMP Pathway Inhibition Enables Expansion and Characterization of Multiple Epithelial Cell<br>Types of the Normal and Cancerous Breast. Molecular Cancer Research, 2019, 17, 1556-1570. | 1.5  | 16        |
| 30 | Genetic Ancestry–dependent Differences in Breast Cancer–induced Field Defects in the<br>Tumor-adjacent Normal Breast. Clinical Cancer Research, 2019, 25, 2848-2859.                             | 3.2  | 23        |
| 31 | Interferon-Î <sup>3</sup> signaling is associated with BRCA1 loss-of-function mutations in high grade serous ovarian cancer. Npj Precision Oncology, 2019, 3, 32.                                | 2.3  | 21        |
| 32 | Attraction and Compaction of Migratory Breast Cancer Cells by Bone Matrix Proteins through<br>Tumor-Osteocyte Interactions. Scientific Reports, 2018, 8, 5420.                                   | 1.6  | 23        |
| 33 | An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers<br>Independent of BRCA Mutations. Clinical Cancer Research, 2018, 24, 3163-3175.                       | 3.2  | 93        |
| 34 | Mutational landscape of RNA-binding proteins in human cancers. RNA Biology, 2018, 15, 115-129.                                                                                                   | 1.5  | 87        |
| 35 | A system for detecting high impact-low frequency mutations in primary tumors and metastases.<br>Oncogene, 2018, 37, 185-196.                                                                     | 2.6  | 21        |
| 36 | Osteocyte-Driven Downregulation of Snail Restrains Effects of Drd2 Inhibitors on Mammary Tumor<br>Cells. Cancer Research, 2018, 78, 3865-3876.                                                   | 0.4  | 43        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression<br>Document Interindividual Differences in Their Differentiation Cascade. Cancer Research, 2018, 78,<br>5107-5123. | 0.4 | 42        |
| 38 | Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling.<br>International Journal of Oncology, 2018, 53, 1001-1012.                                                               | 1.4 | 11        |
| 39 | Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast<br>Cancer Research, 2018, 20, 35.                                                                                | 2.2 | 14        |
| 40 | MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological<br>and solid tumor cells. European Journal of Medicinal Chemistry, 2018, 157, 562-581.                             | 2.6 | 34        |
| 41 | Inhibiting checkpoint kinase 1 protects bone from bone resorption by mammary tumor in a mouse model. Oncotarget, 2018, 9, 9364-9378.                                                                                  | 0.8 | 13        |
| 42 | Microfluidic channel for characterizing normal and breast cancer cells. Journal of Micromechanics and Microengineering, 2017, 27, 035017.                                                                             | 1.5 | 28        |
| 43 | Individualized Breast Cancer Characterization through Single-Cell Analysis of Tumor and Adjacent<br>Normal Cells. Cancer Research, 2017, 77, 2759-2769.                                                               | 0.4 | 16        |
| 44 | RareVar: A Framework for Detecting Low-Frequency Single-Nucleotide Variants. Journal of<br>Computational Biology, 2017, 24, 637-646.                                                                                  | 0.8 | 5         |
| 45 | Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis. Scientific<br>Reports, 2017, 7, 45686.                                                                                       | 1.6 | 35        |
| 46 | Pharmacological Dual Inhibition of Tumor and Tumor-Induced Functional Limitations in a Transgenic<br>Model of Breast Cancer. Molecular Cancer Therapeutics, 2017, 16, 2747-2758.                                      | 1.9 | 19        |
| 47 | Reduction in Migratory Phenotype in a Metastasized Breast Cancer Cell Line via Downregulation of S100A4 and GRM3. Scientific Reports, 2017, 7, 3459.                                                                  | 1.6 | 23        |
| 48 | A spectrum graph-based protein sequence filtering algorithm for proteoform identification by top-down mass spectrometry. , 2017, 2017, 222-229.                                                                       |     | 5         |
| 49 | Inflammation-associated microRNA changes in circulating exosomes of heart failure patients. BMC<br>Research Notes, 2017, 10, 751.                                                                                     | 0.6 | 40        |
| 50 | Will PI3K-targeted therapies for cancer become a reality?. Translational Cancer Research, 2017, 6, S371-S375.                                                                                                         | 0.4 | 0         |
| 51 | Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.<br>Molecular Cancer Research, 2016, 14, 660-671.                                                                   | 1.5 | 9         |
| 52 | Molecular Insights of Pathways Resulting from Two Common PIK3CA Mutations in Breast Cancer.<br>Cancer Research, 2016, 76, 3989-4001.                                                                                  | 0.4 | 27        |
| 53 | Statistical modeling for sensitive detection of low-frequency single nucleotide variants. BMC Genomics, 2016, 17, 514.                                                                                                | 1.2 | 4         |
| 54 | Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts<br>Tumor Characterization. Scientific Reports, 2015, 5, 13526.                                                          | 1.6 | 45        |

Harikrishna Nakshatri

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell<br>Death and Disease, 2015, 6, e1608-e1608.                                                                | 2.7 | 48        |
| 56 | TFAP2C expression in breast cancer: correlation with overall survival beyond 10Âyears of initial diagnosis. Breast Cancer Research and Treatment, 2015, 152, 519-531.                                           | 1.1 | 30        |
| 57 | HOXB7 Is an ERα Cofactor in the Activation of HER2 and Multiple ER Target Genes Leading to Endocrine Resistance. Cancer Discovery, 2015, 5, 944-959.                                                            | 7.7 | 72        |
| 58 | Essential Components of Cancer Education. Cancer Research, 2015, 75, 5202-5205.                                                                                                                                 | 0.4 | 10        |
| 59 | Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells. Oncotarget, 2015, 6, 12682-12696.                                                                                       | 0.8 | 52        |
| 60 | PROGgeneV2: enhancements on the existing database. BMC Cancer, 2014, 14, 970.                                                                                                                                   | 1.1 | 417       |
| 61 | The mushroom Ganoderma lucidum suppresses breast-to-lung cancer metastasis through the inhibition of pro-invasive genes. International Journal of Oncology, 2014, 44, 2009-2015.                                | 1.4 | 41        |
| 62 | Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. Journal of Pathology, 2014, 232, 369-381.                                              | 2.1 | 98        |
| 63 | Cancer Affects microRNA Expression, Release, and Function in Cardiac and Skeletal Muscle. Cancer Research, 2014, 74, 4270-4281.                                                                                 | 0.4 | 44        |
| 64 | MicroRNA and Cancer Drug Resistance. , 2014, , 305-326.                                                                                                                                                         |     | 0         |
| 65 | Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing. BMC Medical Genomics, 2013, 6, 21.                                                                                       | 0.7 | 25        |
| 66 | Identification of FDA-approved Drugs Targeting Breast Cancer Stem Cells Along With Biomarkers of Sensitivity. Scientific Reports, 2013, 3, 2530.                                                                | 1.6 | 53        |
| 67 | PROCgene: gene expression based survival analysis web application for multiple cancers. Journal of Clinical Bioinformatics, 2013, 3, 22.                                                                        | 1.2 | 140       |
| 68 | Role of <scp>AKT</scp> isotypes in breast cancer. Journal of Pathology, 2013, 229, e1.                                                                                                                          | 2.1 | 6         |
| 69 | ANTXR1, a Stem Cell-Enriched Functional Biomarker, Connects Collagen Signaling to Cancer Stem-like<br>Cells and Metastasis in Breast Cancer. Cancer Research, 2013, 73, 5821-5833.                              | 0.4 | 104       |
| 70 | HOXB13 Mediates Tamoxifen Resistance and Invasiveness in Human Breast Cancer by Suppressing ERα and<br>Inducing IL-6 Expression. Cancer Research, 2013, 73, 5449-5458.                                          | 0.4 | 80        |
| 71 | Journal Watch: Our panel of experts highlight the most important research articles across the spectrum of topics relevant to the field of breast cancer management. Breast Cancer Management, 2013, 2, 189-191. | 0.2 | 0         |
| 72 | Journal Watch: Our expert highlights the most important research articles across the spectrum of<br>topics relevant to the field of breast cancer management. Breast Cancer Management, 2013, 2, 97-99.         | 0.2 | 0         |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Journal Watch: Our expert highlights the most important research articles across a spectrum of<br>topics relevant to the field of breast cancer management Breast Cancer Management, 2012, 1, 117-118.                                                           | 0.2 | 0         |
| 74 | Breast-cancer stem cells—beyond semantics. Lancet Oncology, The, 2012, 13, e43-e48.                                                                                                                                                                              | 5.1 | 137       |
| 75 | Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer<br>Nanotechnology, 2012, 3, 47-54.                                                                                                                          | 1.9 | 132       |
| 76 | PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. Journal of Clinical Bioinformatics, 2012, 2, 23.                                                                                                  | 1.2 | 58        |
| 77 | FOXA1 is an independent prognostic marker for ER-positive breast cancer. Breast Cancer Research and Treatment, 2012, 131, 881-890.                                                                                                                               | 1.1 | 111       |
| 78 | Virtual Screening Targeting the Urokinase Receptor, Biochemical and Cell-Based Studies, Synthesis,<br>Pharmacokinetic Characterization, and Effect on Breast Tumor Metastasis. Journal of Medicinal<br>Chemistry, 2011, 54, 7193-7205.                           | 2.9 | 32        |
| 79 | Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast<br>Cancer Research, 2011, 13, R86.                                                                                                                          | 2.2 | 83        |
| 80 | FOXA1 (forkhead box A1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011, , .                                                                                                                                                               | 0.1 | 1         |
| 81 | High-level expression of forkhead-box protein A1 in metastatic prostate cancer. Histopathology, 2011, 58, 766-772.                                                                                                                                               | 1.6 | 57        |
| 82 | Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22.<br>Oncogene, 2011, 30, 1290-1301.                                                                                                                                | 2.6 | 115       |
| 83 | Biomarkers for breast cancer stem cells: the challenges ahead. Biomarkers in Medicine, 2011, 5, 661-671.                                                                                                                                                         | 0.6 | 17        |
| 84 | A large, consistent plasma proteomics data set from prospectively collected breast cancer patient and healthy volunteer samples. Journal of Translational Medicine, 2011, 9, 80.                                                                                 | 1.8 | 12        |
| 85 | A water soluble parthenolide analog suppresses <i>in vivo</i> tumor growth of two<br>tobaccoâ€associated cancers, lung and bladder cancer, by targeting NFâ€₽B and generating reactive oxygen<br>species. International Journal of Cancer, 2011, 128, 2481-2494. | 2.3 | 72        |
| 86 | Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment.<br>Breast Cancer Research and Treatment, 2010, 123, 97-108.                                                                                                       | 1.1 | 165       |
| 87 | SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype. BMC Cancer, 2010, 10, 411.                                                                                                                                                | 1.1 | 155       |
| 88 | A waterâ€soluble parthenolide analogue suppresses in vivo <i>prostate cancer</i> growth by targeting<br>NFκB and generating reactive oxygen species. Prostate, 2010, 70, 1074-1086.                                                                              | 1.2 | 60        |
| 89 | Prognosis of Hormone-Dependent Breast Cancers: Implications of the Presence of Dysfunctional<br>Transcriptional Networks Activated by Insulin via the Immune Transcription Factor T-bet. Cancer<br>Research, 2010, 70, 685-696.                                  | 0.4 | 23        |
| 90 | ITF2 is a target of CXCR4 in MDA-MB-231 breast cancer cells and is associated with reduced survival in estrogen receptor-negative breast cancer. Cancer Biology and Therapy, 2010, 10, 600-614.                                                                  | 1.5 | 15        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Loss of ERα and FOXA1 expression in a progression model of luminal type breast cancer: Insights from PyMT transgenic mouse model. Oncology Reports, 2010, 24, 1233-9.         | 1.2 | 24        |
| 92  | Expression of Forkhead-box protein A1, a marker of luminal A type breast cancer, parallels low<br>Oncotype DX 21-gene recurrence scores. Modern Pathology, 2010, 23, 270-275. | 2.9 | 43        |
| 93  | Subcellular Localization of Activated AKT in Estrogen Receptor- and Progesterone<br>Receptor-Expressing Breast Cancers. American Journal of Pathology, 2010, 176, 2139-2149.  | 1.9 | 40        |
| 94  | Radiation resistance in breast cancer: are CD44+/CD24-/proteosomelow/PKH26+cells to blame?. Breast<br>Cancer Research, 2010, 12, 105.                                         | 2.2 | 22        |
| 95  | Breast Cancer Stem Cells and Intrinsic Subtypes: Controversies Rage On. Current Stem Cell Research and Therapy, 2009, 4, 50-60.                                               | 0.6 | 102       |
| 96  | Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications. Journal of Clinical Pathology, 2009, 62, 6-12.                   | 1.0 | 74        |
| 97  | Epithelial-to-Mesenchymal Transition and Ovarian Tumor Progression Induced by Tissue<br>Transglutaminase. Cancer Research, 2009, 69, 9192-9201.                               | 0.4 | 114       |
| 98  | Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery, 2009, 146, 258-263.                                                                           | 1.0 | 118       |
| 99  | Intrinsic subtypeâ€associated changes in the plasma proteome in breast cancer. Proteomics - Clinical Applications, 2009, 3, 1305-1313.                                        | 0.8 | 13        |
| 100 | NF-κB inhibition in human hepatocellular carcinoma and its potential as adjunct to sorafenib based therapy. Cancer Letters, 2009, 278, 145-155.                               | 3.2 | 67        |
| 101 | Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids<br>Research, 2009, 37, 4850-4861.                                              | 6.5 | 310       |
| 102 | FOXA1 in breast cancer. Expert Reviews in Molecular Medicine, 2009, 11, e8.                                                                                                   | 1.6 | 60        |
| 103 | Correlation of FOXA1 expression with Oncotype Dx recurrence scores. Journal of Clinical Oncology, 2009, 27, 11058-11058.                                                      | 0.8 | 0         |
| 104 | Amplified in breast cancer 1 expression in breast cancer. Histopathology, 2008, 53, 634-641.                                                                                  | 1.6 | 10        |
| 105 | Phosphoinositol phosphatase SHIP2 promotes cancer development and metastasis coupled with alterations in EGF receptor turnover. Carcinogenesis, 2008, 29, 25-34.              | 1.3 | 71        |
| 106 | AKT Alters Genome-Wide Estrogen Receptor α Binding and Impacts Estrogen Signaling in Breast Cancer.<br>Molecular and Cellular Biology, 2008, 28, 7487-7503.                   | 1.1 | 87        |
| 107 | Striatin-3γ inhibits estrogen receptor activity by recruiting a protein phosphatase. Journal of<br>Molecular Endocrinology, 2008, 40, 199-210.                                | 1.1 | 12        |
| 108 | Antimyeloma Effects of a Sesquiterpene Lactone Parthenolide. Clinical Cancer Research, 2008, 14, 1814-1822.                                                                   | 3.2 | 37        |

Harikrishna Nakshatri

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis, 2008, 29, 1893-1900.                                            | 1.3 | 88        |
| 110 | The Platelet-derived Growth Factor Receptor α Is Destabilized by Geldanamycins in Cancer Cells.<br>Journal of Biological Chemistry, 2007, 282, 445-453.                                                                 | 1.6 | 56        |
| 111 | Forkhead box A1 expression in breast cancer is associated with luminal subtype and good prognosis.<br>Journal of Clinical Pathology, 2007, 61, 327-332.                                                                 | 1.0 | 101       |
| 112 | Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo. Molecular Cancer Therapeutics, 2007, 6, 1736-1744.                           | 1.9 | 39        |
| 113 | Enhanced Peritoneal Ovarian Tumor Dissemination by Tissue Transglutaminase. Cancer Research, 2007, 67, 7194-7202.                                                                                                       | 0.4 | 108       |
| 114 | FOXA1 Expression in Breast Cancer—Correlation with Luminal Subtype A and Survival. Clinical Cancer Research, 2007, 13, 4415-4421.                                                                                       | 3.2 | 220       |
| 115 | 2-Methoxyestradiol Inhibits the Anaphase-Promoting Complex and Protein Translation in Human<br>Breast Cancer Cells. Cancer Research, 2007, 67, 702-708.                                                                 | 0.4 | 24        |
| 116 | Effect of Celecoxib and Novel Agent LC-1 in a Hamster Model of Lung Cancer. Journal of Surgical<br>Research, 2007, 143, 169-176.                                                                                        | 0.8 | 7         |
| 117 | FOXA1 as a therapeutic target for breast cancer. Expert Opinion on Therapeutic Targets, 2007, 11, 507-514.                                                                                                              | 1.5 | 61        |
| 118 | Identity Profiling of Cell Surface Markers by Multiplex Gold Nanorod Probes. Nano Letters, 2007, 7,<br>2300-2306.                                                                                                       | 4.5 | 144       |
| 119 | Parthenolide Sensitizes Cells to X-Ray-Induced Cell Killing through Inhibition of NF-κB and Split-Dose<br>Repair. Radiation Research, 2007, 168, 689-697.                                                               | 0.7 | 32        |
| 120 | NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 2007, 26, 711-724.                             | 2.6 | 545       |
| 121 | Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells:<br>implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene, 2007,<br>26, 3329-3337. | 2.6 | 105       |
| 122 | MOZ and MOZ-CBP cooperate with NF-κB to activate transcription from NF-κB–dependent promoters.<br>Experimental Hematology, 2007, 35, 1782-1792.                                                                         | 0.2 | 31        |
| 123 | CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research, 2006, 8, R59.                                                                      | 2.2 | 839       |
| 124 | Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. Prostate, 2006, 66, 1498-1511.                                                          | 1.2 | 44        |
| 125 | Negative regulation of MHC class II gene expression by CXCR4. Experimental Hematology, 2006, 34, 1085-1092.                                                                                                             | 0.2 | 19        |
| 126 | Effects of HIV Protease Inhibitor Ritonavir on Akt-Regulated Cell Proliferation in Breast Cancer.<br>Clinical Cancer Research, 2006, 12, 1883-1896.                                                                     | 3.2 | 100       |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The Sesquiterpene Lactone Parthenolide Induces Apoptosis and Overcomes the Protective Effect of the<br>Bone Marrow Microenvironment in Human Multiple Myeloma Cells Blood, 2006, 108, 5058-5058.                                 | 0.6 | 1         |
| 128 | Prediction of long-term survival using expression of FOXA1, a determinant of estrogen response domains in breast cancer. Journal of Clinical Oncology, 2006, 24, 539-539.                                                        | 0.8 | 1         |
| 129 | TNFα resistance in MCF-7 breast cancer cells is associated with altered subcellular localization of p21CIP1 and p27KIP1. Cell Death and Differentiation, 2005, 12, 98-100.                                                       | 5.0 | 12        |
| 130 | The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-11±/CXCL12. Carcinogenesis, 2005, 26, 1706-1715.                                                 | 1.3 | 61        |
| 131 | The macrophage inhibitory cytokine integrates AKT/PKB and MAP kinase signaling pathways in breast cancer cells. Carcinogenesis, 2005, 26, 900-907.                                                                               | 1.3 | 40        |
| 132 | Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-κB pathway in pancreatic carcinoma cells. Molecular Cancer Therapeutics, 2005, 4, 587-594.                                      | 1.9 | 108       |
| 133 | The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Molecular Cancer Therapeutics, 2005, 4, 1004-1012.                          | 1.9 | 145       |
| 134 | Inhibiting Proteasomal Proteolysis Sustains Estrogen Receptor-α Activation. Molecular Endocrinology,<br>2004, 18, 2603-2615.                                                                                                     | 3.7 | 78        |
| 135 | Nuclear Factor-κB Is Constitutively Activated in Prostate Cancer In vitro and Is Overexpressed in Prostatic Intraepithelial Neoplasia and Adenocarcinoma of the Prostate. Clinical Cancer Research, 2004, 10, 5501-5507.         | 3.2 | 157       |
| 136 | Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis<br>factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase.<br>Oncogene, 2004, 23, 7330-7344. | 2.6 | 141       |
| 137 | Tumour necrosis factor and PI3-kinase control oestrogen receptor alpha protein level and its transrepression function. British Journal of Cancer, 2004, 90, 853-859.                                                             | 2.9 | 28        |
| 138 | Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Investigational New Drugs, 2004, 22, 299-305.                                                                         | 1.2 | 109       |
| 139 | Interleukin-1α Promotes Tumor Growth and Cachexia in MCF-7 Xenograft Model of Breast Cancer.<br>American Journal of Pathology, 2003, 163, 2531-2541.                                                                             | 1.9 | 72        |
| 140 | NF- $\hat{I}^{e}$ B Promotes Breast Cancer Cell Migration and Metastasis by Inducing the Expression of the Chemokine Receptor CXCR4. Journal of Biological Chemistry, 2003, 278, 21631-21638.                                    | 1.6 | 568       |
| 141 | Identification of signal transduction pathways involved in constitutive NF-ήB activation in breast cancer cells. Oncogene, 2002, 21, 2066-2078.                                                                                  | 2.6 | 114       |
| 142 | NF-κB and breast cancer. Current Problems in Cancer, 2002, 26, 282-309.                                                                                                                                                          | 1.0 | 62        |
| 143 | Phosphatidylinositol 3-Kinase/AKT-mediated Activation of Estrogen Receptor α. Journal of Biological Chemistry, 2001, 276, 9817-9824.                                                                                             | 1.6 | 831       |
| 144 | Fusion AML1 transcript in a radiation-associated leukemia results in a truncated inhibitory AML1 protein. Blood, 2001, 97, 2168-2170.                                                                                            | 0.6 | 33        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Transformation of interleukin-3–dependent cells without participation of Stat5/bcl-xL: cooperation<br>of akt with raf/erk leads to p65 nuclear factor κB–mediated antiapoptosis involving c-IAP2. Blood, 2001,<br>98, 2508-2517.                                   | 0.6 | 37        |
| 146 | Repression of GADD153/CHOP by NF-κB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene, 2001, 20, 2178-2185.                                                                                                           | 2.6 | 104       |
| 147 | Cutting Edge: IL-17F, a Novel Cytokine Selectively Expressed in Activated T Cells and Monocytes,<br>Regulates Angiogenesis and Endothelial Cell Cytokine Production. Journal of Immunology, 2001, 167,<br>4137-4140.                                               | 0.4 | 320       |
| 148 | The Platelet-activating Factor Receptor Protects Epidermal Cells from Tumor Necrosis Factor (TNF) α<br>and TNF-related Apoptosis-inducing Ligand-induced Apoptosis through an NF-ήB-dependent Process.<br>Journal of Biological Chemistry, 2001, 276, 45548-45554. | 1.6 | 41        |
| 149 | Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB. Biochemical Journal, 2000, 348, 591.                                                                                                                                       | 1.7 | 37        |
| 150 | Repression of transforming-growth-factor-l²-mediated transcription by nuclear factor l̂ºB. Biochemical Journal, 2000, 348, 591-596.                                                                                                                                | 1.7 | 111       |
| 151 | Paclitaxel sensitivity of breast cancer cells with constitutively active NF-κB is enhanced by lκBα<br>super-repressor and parthenolide. Oncogene, 2000, 19, 4159-4169.                                                                                             | 2.6 | 277       |
| 152 | The Orphan Receptor COUP-TFII Regulates G2/M Progression of Breast Cancer Cells by Modulating the<br>Expression/Activity of p21WAF1/CIP1, Cyclin D1, and cdk2. Biochemical and Biophysical Research<br>Communications, 2000, 270, 1144-1153.                       | 1.0 | 35        |
| 153 | Cancer Cell-Derived Interleukin 1α Contributes to Autocrine and Paracrine Induction of Pro-metastatic<br>Genes in Breast Cancer. Biochemical and Biophysical Research Communications, 2000, 275, 60-62.                                                            | 1.0 | 64        |
| 154 | Negative Regulation of Transactivation Function but Not DNA Binding of NF-κB and AP-1 by lκBβ1 in Breast<br>Cancer Cells. Journal of Biological Chemistry, 1999, 274, 18827-18835.                                                                                 | 1.6 | 56        |
| 155 | Cloning of BRAK, a Novel Divergent CXC Chemokine Preferentially Expressed in Normal versus<br>Malignant Cells. Biochemical and Biophysical Research Communications, 1999, 255, 703-706.                                                                            | 1.0 | 177       |
| 156 | Binding and activation of the human aldehyde dehydrogenase 2 promoter by hepatocyte nuclear<br>factor 4. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1399, 181-186.                                                                            | 2.4 | 32        |
| 157 | Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Research, 1998, 26, 2491-2499.                                                      | 6.5 | 92        |
| 158 | Regulation of the c-jun Gene in p210 BCR-ABL Transformed Cells Corresponds With Activity of JNK, the<br>c-jun N-Terminal Kinase. Blood, 1998, 92, 2450-2460.                                                                                                       | 0.6 | 47        |
| 159 | NF-ÂB activation and interleukin 6 production in fibroblasts by estrogen receptor-negative breast<br>cancer cell-derived interleukin 1Â. Proceedings of the National Academy of Sciences of the United<br>States of America, 1998, 95, 6971-6976.                  | 3.3 | 78        |
| 160 | Regulation of the c-jun Gene in p210 BCR-ABL Transformed Cells Corresponds With Activity of JNK, the<br>c-jun N-Terminal Kinase. Blood, 1998, 92, 2450-2460.                                                                                                       | 0.6 | 6         |
| 161 | Constitutive Activation of NF-κB during Progression of Breast Cancer to Hormone-Independent<br>Growth. Molecular and Cellular Biology, 1997, 17, 3629-3639.                                                                                                        | 1.1 | 790       |
| 162 | Differential Effect of Nonidet P40 on DNA Binding of Transcription Factors. Analytical Biochemistry,<br>1997, 249, 103-104.                                                                                                                                        | 1.1 | 9         |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Isolation of retinoic acid-repressed genes from P19 embryonal carcinoma cells. Gene, 1996, 174, 79-84.                                                                                                                                           | 1.0  | 31        |
| 164 | CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation<br>efficiency Proceedings of the National Academy of Sciences of the United States of America, 1996, 93,<br>3967-3971.                                 | 3.3  | 101       |
| 165 | Differential Whole-Cell Extract Preparation and Electrophoretic Mobility Shift Assay to Evaluate the Effect of Tyrosine Phosphatases on DNA Binding Activity of Transcription Factors. Analytical Biochemistry, 1996, 236, 178-181.              | 1.1  | 3         |
| 166 | Subunit Association and DNA Binding Activity of the Heterotrimeric Transcription Factor NF-Y Is Regulated by Cellular Redox. Journal of Biological Chemistry, 1996, 271, 28784-28791.                                                            | 1.6  | 88        |
| 167 | Interaction of Oct-1 with TFIIB. Journal of Biological Chemistry, 1995, 270, 19613-19623.                                                                                                                                                        | 1.6  | 56        |
| 168 | Stage and tissue-specific expression of the alcohol dehydrogenase 1 (Adh-1) gene during mouse development. Developmental Dynamics, 1994, 199, 199-213.                                                                                           | 0.8  | 45        |
| 169 | The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers Journal of Biological Chemistry, 1994, 269, 890-902.  | 1.6  | 139       |
| 170 | The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers. Journal of Biological Chemistry, 1994, 269, 890-902. | 1.6  | 121       |
| 171 | Retinoic Acid Signal Transduction Pathways. Annals of the New York Academy of Sciences, 1993, 684, 19-34.                                                                                                                                        | 1.8  | 45        |
| 172 | RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo EMBO Journal, 1993, 12, 2349-2360.                                                                                           | 3.5  | 275       |
| 173 | RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO Journal, 1993, 12, 2349-60.                                                                                            | 3.5  | 82        |
| 174 | Retinoid receptors and binding proteins. Journal of Cell Science, 1992, 1992, 69-76.                                                                                                                                                             | 1.2  | 32        |
| 175 | Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell, 1992, 70, 1007-1019.                                                                   | 13.5 | 365       |
| 176 | Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell, 1992, 68, 377-395.                                                                              | 13.5 | 1,218     |
| 177 | The first 124 nucleotides of the E7 coding sequences of HPV16 can render the HPV11 genome transformation competent. Virology, 1992, 186, 348-351.                                                                                                | 1.1  | 12        |
| 178 | A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI)<br>promoter EMBO Journal, 1991, 10, 2223-2230.                                                                                              | 3.5  | 226       |
| 179 | Mouse retinoic acid receptor alpha 2 isoform is transcribed from a promoter that contains a retinoic acid response element Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10138-10142.               | 3.3  | 204       |
| 180 | Activity and enhancer binding factors for BK virus regulatory elements in differentiating embryonal carcinoma cells. Virology, 1991, 183, 374-380.                                                                                               | 1.1  | 9         |

| #   | Article                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI)<br>promoter. EMBO Journal, 1991, 10, 2223-30.          | 3.5  | 68        |
| 182 | Ubiquitous and cell-type-specific protein interactions with human papillomavirus type 16 and type 18 enhancers. Virology, 1990, 178, 92-103.                | 1.1  | 34        |
| 183 | Activity and enhancer binding factors for jc virus regulatory elements in differentiating embryonal carcinoma cells. Virology, 1990, 177, 784-789.          | 1.1  | 18        |
| 184 | Glucocorticoid-dependent oncogenic transformation by type 16 but not type 11 human papilloma virus<br>DNA. Nature, 1988, 335, 832-835.                      | 13.7 | 146       |
| 185 | Functional role of BK virus tumor antigens in transformation. Journal of Virology, 1988, 62, 4613-4621.                                                     | 1.5  | 19        |
| 186 | Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at<br>Risk for Breast Cancer. Frontiers in Oncology, 0, 12, . | 1.3  | 3         |