
Abdessamad Grirrane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Structure, Reactivity and Catalytic Implications of a Cationic, Acetylideâ€Bridged Trigold–JohnPhos Species. Chemistry - A European Journal, 2020, 26, 8810-8818.	3.3	2
2	Double A ³ â€Coupling of Primary Amines Catalysed by Gold Complexes. Chemistry - A European Journal, 2018, 24, 16356-16367.	3.3	8
3	Frontispiece: Preparation of Tremorine and Gemini Surfactant Precursors with Cationic Ethynylâ€Bridged Digold Catalysts. Chemistry - A European Journal, 2017, 23, .	3.3	0
4	Preparation of Tremorine and Gemini Surfactant Precursors with Cationic Ethynylâ€Bridged Digold Catalysts. Chemistry - A European Journal, 2017, 23, 2792-2801.	3.3	12
5	Catalytic Activity of Cationic and Neutral Silver(I)–XPhos Complexes with Nitrogen Ligands or Tolylsulfonate for Mannich and Azaâ€Diels–Alder Coupling Reactions. Chemistry - A European Journal, 2016, 22, 340-354.	3.3	20
6	Catalytic stereoselective addition to alkynes. Borylation or silylation promoted by magnesia-supported iron oxide and cis-diboronation or silaboration by supported platinum nanoparticles. Journal of Catalysis, 2015, 329, 401-412.	6.2	38
7	Experimental and Computational Studies of the Molybdenumâ€Flanking Arene Interaction in Quadruply Bonded Dimolybdenum Complexes with Terphenyl Ligands. Chemistry - A European Journal, 2015, 21, 410-421.	3.3	13
8	Mixed (Fe2+ and Cu2+) double metal hexacyanocobaltates as solid catalyst for the aerobic oxidation of oximes to carbonyl compounds. Journal of Catalysis, 2014, 311, 386-392.	6.2	46
9	Cationic Copper(I) Complexes as Highly Efficient Catalysts for Single and Double A ³ â€Coupling Mannich Reactions of Terminal Alkynes: Mechanistic Insights and Comparative Studies with Analogous Gold(I) Complexes. Chemistry - A European Journal, 2014, 20, 14317-14328.	3.3	21
10	Deactivation of Cationic Cu ^I and Au ^I Catalysts for A ³ Coupling by CH ₂ Cl ₂ : Mechanistic Implications of the Formation of Neutral Cu ^I and Au ^I Chlorides. Angewandte Chemie - International Edition, 2014, 53, 7253-7258.	13.8	46
11	Air‣table, Dinuclear and Tetranuclear σ,Ï€â€Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal, 2013, 19, 12239-12244.	3.3	50
12	Supported palladium nanoparticles as heterogeneous ligand-free catalysts for the Hiyama C–C coupling of vinylsilanes and halobenzenes leading to styrenes. Journal of Catalysis, 2013, 302, 49-57.	6.2	25
13	Isolation and X-ray characterization of palladium–N complexes in the guanylation of aromatic amines. Mechanistic implications. Beilstein Journal of Organic Chemistry, 2013, 9, 1455-1462.	2.2	8
14	Orthogonal CN Plus CC Tandem Reaction of Iodoanilines Leading to Styrylguanidines Catalyzed by Supported Palladium Nanoparticles. Chemistry - A European Journal, 2012, 18, 14934-14938.	3.3	21
15	Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved?. ACS Catalysis, 2011, 1, 1647-1653.	11.2	109
16	Stereoselective Single (Copper) or Double (Platinum) Boronation of Alkynes Catalyzed by Magnesia upported Copper Oxide or Platinum Nanoparticles. Chemistry - A European Journal, 2011, 17, 2467-2478.	3.3	99
17	Thiodiacetate–Manganese Chemistry with N ligands: Unique Control of the Supramolecular Arrangement over the Metal Coordination Mode. Chemistry - A European Journal, 2011, 17, 10600-10617.	3.3	29
18	Comparison of the coordination capabilities of thiodiacetate and oxydiacetate ligands through the X-ray characterization and DFT studies of [V(O)(tda)(phen)]·4H2O and [V(O)(oda)(phen)]·1.5H2O. Polyhedron, 2010, 29, 3028-3035.	2.2	29

#	Article	IF	CITATIONS
19	Thiodipropionate Zn ^{ll} Complexes: Synthesis, DFT Studies, and Xâ€ray Structure of [{Zn(phen)(H ₂ 0)} ₂ (î¼â€tdp) ₂]·3H ₂ 0. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2409-2412.	1.2	4
20	Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts. Nature Protocols, 2010, 5, 429-438.	12.0	77
21	Highly active and selective gold catalysts for the aerobic oxidative condensation of benzylamines to imines and one-pot, two-step synthesis of secondary benzylamines. Journal of Catalysis, 2009, 264, 138-144.	6.2	185
22	Gold nanoparticles supported on ceria promote the selective oxidation of oximes into the corresponding carbonylic compounds. Journal of Catalysis, 2009, 268, 350-355.	6.2	45
23	Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings. Chemistry - A European Journal, 2009, 15, 924-935.	3.3	18
24	Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 2008, 322, 1661-1664.	12.6	650
25	Solid-State Structures and Solution Studies of Novel Cyclopentadienyl Mercury Compounds. Inorganic Chemistry, 2007, 46, 4667-4676.	4.0	9
26	Zincâ^'Zinc Bonded Zincocene Structures. Synthesis and Characterization of Zn2(Î-5-C5Me5)2and Zn2(Î-5-C5Me4Et)2. Journal of the American Chemical Society, 2007, 129, 693-703.	13.7	169
27	Cyclopentadienyl Zincates: Synthesis and X-ray Studies of Sodium and Potassium Salts of the [Zn(C5H5)3]â^' and [Zn2(C5H5)5]â^' Ions. Angewandte Chemie - International Edition, 2007, 46, 1296-1299.	13.8	25
28	Thiodiacetate and Oxydiacetate Cobalt Complexes: Synthesis, Structure and Stereochemical Features. European Journal of Inorganic Chemistry, 2007, 2007, 3543-3552.	2.0	33
29	Structural diversity of thiodiacetate compounds of group II metals: Synthesis and X-ray characterization of 2D coordination polymers of calcium and strontium. Inorganic Chemistry Communication, 2007, 10, 1125-1128.	3.9	22
30	Synthesis of mixed cobalt–nickel oxydiacetate compounds: The X-ray characterization of [Co0.4Ni0.6(oda)(H2O)3]·1.5H2O. Polyhedron, 2007, 26, 3343-3349.	2.2	10
31	Novel results on thiodiacetate zinc(II) complexes: Synthesis and structure of [Zn(tda)(phen)]2·5H2O. Inorganic Chemistry Communication, 2006, 9, 160-163.	3.9	25
32	Magnesium dicarboxylates: First structurally characterized oxydiacetate and thiodiacetate magnesium complexes. Inorganic Chemistry Communication, 2005, 8, 453-456.	3.9	24
33	Thiodiacetate cobalt(II) complexes: Synthesis, structure and properties. Inorganic Chemistry Communication, 2005, 8, 463-466.	3.9	30
34	Supramolecular Interactions as Determining Factors of the Geometry of Metallic Building Blocks: Tetracarboxylate Dimanganese Species. Angewandte Chemie - International Edition, 2005, 44, 3429-3432.	13.8	27
35	Manganese Oxydiacetate Complexes: Synthesis, Structure and Magnetic Properties. European Journal of Inorganic Chemistry, 2004, 2004, 707-717.	2.0	29
36	Synthesis, structure, magnetic and electrochemical properties of an oxydiacetate iron(II) complex. Inorganica Chimica Acta, 2004, 357, 4215-4219.	2.4	20

#	Article	IF	CITATIONS
37	First example of a tetra-carboxylate bridged dimanganese speciesElectronic supplementary information (ESI) available: experimental section and computational details. See http://www.rsc.org/suppdata/cc/b2/b211886f/. Chemical Communications, 2003, , 512-513.	4.1	36
38	Synthesis and molecular structure of oxydiacetate complexes of nickel(ii) and cobalt(ii). Theoretical analysis of the planar and non-planar conformations of oxydiacetate ligand and oxydiacetic acid. Dalton Transactions RSC, 2002, , 3771-3777.	2.3	44