
Charles O Elson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transforming growth factor- \hat{I}^2 induces development of the TH17 lineage. Nature, 2006, 441, 231-234.	27.8	3,086
2	Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, 489, 231-241.	27.8	1,278
3	Late Developmental Plasticity in the T Helper 17 Lineage. Immunity, 2009, 30, 92-107.	14.3	934
4	Anti–Interleukin-12 Antibody for Active Crohn's Disease. New England Journal of Medicine, 2004, 351, 2069-2079.	27.0	809
5	Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 2013, 498, 113-117.	27.8	639
6	Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology, 1994, 107, 1643-1652.	1.3	635
7	Bacterial flagellin is a dominant antigen in Crohn disease. Journal of Clinical Investigation, 2004, 113, 1296-1306.	8.2	628
8	Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunological Reviews, 2005, 206, 260-276.	6.0	449
9	Antibodies to CBir1 Flagellin Define a Unique Response That Is Associated Independently With Complicated Crohn's Disease. Gastroenterology, 2005, 128, 2020-2028.	1.3	439
10	Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4 ⁺ T cells. Science, 2015, 348, 1031-1035.	12.6	421
11	Monoclonal Anti–Interleukin 23 Reverses Active Colitis in a T Cell–Mediated Model in Mice. Gastroenterology, 2007, 132, 2359-2370.	1.3	414
12	The Th17 Pathway and Inflammatory Diseases of the Intestines, Lungs, and Skin. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 477-512.	22.4	384
13	A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19256-19261.	7.1	377
14	Bacterial flagellin is a dominant antigen in Crohn disease. Journal of Clinical Investigation, 2004, 113, 1296-1306.	8.2	377
15	CD4+ T Cells Reactive to Enteric Bacterial Antigens in Spontaneously Colitic C3H/HeJBir Mice: Increased T Helper Cell Type 1 Response and Ability to Transfer Disease. Journal of Experimental Medicine, 1998, 187, 855-864.	8.5	365
16	Acute Gastrointestinal Infection Induces Long-Lived Microbiota-Specific T Cell Responses. Science, 2012, 337, 1553-1556.	12.6	331
17	Serum Immune Responses Predict Rapid Disease Progression among Children with Crohn's Disease: Immune Responses Predict Disease Progression. American Journal of Gastroenterology, 2006, 101, 360-367.	0.4	266
18	Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. American Journal of Physiology - Renal Physiology, 1998, 274, G544-G551.	3.4	249

#	Article	IF	CITATIONS
19	Th17 Cells Upregulate Polymeric Ig Receptor and Intestinal IgA and Contribute to Intestinal Homeostasis. Journal of Immunology, 2012, 189, 4666-4673.	0.8	209
20	Adaptive immune education by gut microbiota antigens. Immunology, 2018, 154, 28-37.	4.4	203
21	Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. Journal of Experimental Medicine, 2010, 207, 1321-1332.	8.5	200
22	Bacterial-Reactive T Regulatory Cells Inhibit Pathogenic Immune Responses to the Enteric Flora. Journal of Immunology, 2002, 169, 6112-6119.	0.8	195
23	Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology, 1994, 107, 1726-1735.	1.3	187
24	TGF-β Promotes Th17 Cell Development through Inhibition of SOCS3. Journal of Immunology, 2009, 183, 97-105.	0.8	186
25	Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Research and Therapy, 2014, 16, 486.	3.5	176
26	Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Science Immunology, 2017, 2, .	11.9	167
27	Th17 Cells Induce Colitis and Promote Th1 Cell Responses through IL-17 Induction of Innate IL-12 and IL-23 Production. Journal of Immunology, 2011, 186, 6313-6318.	0.8	157
28	Experimental Inflammatory Bowel Disease: Insights into the Host-Microbiota Dialog. Immunity, 2011, 34, 293-302.	14.3	142
29	Microbiota Downregulates Dendritic Cell Expression of miR-10a, Which Targets IL-12/IL-23p40. Journal of Immunology, 2011, 187, 5879-5886.	0.8	137
30	Perspectives on Mucosal Vaccines: Is Mucosal Tolerance a Barrier?. Journal of Immunology, 2007, 179, 5633-5638.	0.8	134
31	T Helper 1 and T Helper 2 Cells Are Pathogenic in an Antigen-specific Model of Colitis. Journal of Experimental Medicine, 2002, 195, 71-84.	8.5	133
32	Microbiota activation and regulation of innate and adaptive immunity. Immunological Reviews, 2014, 260, 206-220.	6.0	126
33	A Novel Role for Defensins in Intestinal Homeostasis: Regulation of IL-1Î ² Secretion. Journal of Immunology, 2007, 179, 1245-1253.	0.8	108
34	Isolation of flagellated bacteria implicated in Crohn's disease. Inflammatory Bowel Diseases, 2007, 13, 1191-1201.	1.9	108
35	Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 2012, 3, 332-344.	9.8	100
36	<i>Helicobacter</i> species are potent drivers of colonic T cell responses in homeostasis and inflammation. Science Immunology, 2017, 2, .	11.9	100

#	Article	IF	CITATIONS
37	Anti-flagellin (CBir1) phenotypic and genetic Crohn's disease associations. Inflammatory Bowel Diseases, 2007, 13, 524-530.	1.9	97
38	Genetic Analysis of Susceptibility to Dextran Sulfate Sodium-Induced Colitis in Mice. Genomics, 1999, 55, 147-156.	2.9	94
39	Generation of Mucosal Dendritic Cells from Bone Marrow Reveals a Critical Role of Retinoic Acid. Journal of Immunology, 2010, 185, 5915-5925.	0.8	93
40	Colitis Induced by Enteric Bacterial Antigen-Specific CD4+ T Cells Requires CD40-CD40 Ligand Interactions for a Sustained Increase in Mucosal IL-12. Journal of Immunology, 2000, 165, 2173-2182.	0.8	87
41	Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestineâ€protective regulatory T cells. European Journal of Immunology, 2009, 39, 3134-3146.	2.9	86
42	TGF-Î ² converts Th1 cells into Th17 cells through stimulation of Runx1 expression. European Journal of Immunology, 2015, 45, 1010-1018.	2.9	84
43	Tight Mucosal Compartmentation of the Murine Immune Response to Antigens of the Enteric Microbiota. Gastroenterology, 2006, 130, 2050-2059.	1.3	83
44	Microbial induction of inflammatory bowel disease associated gene TL1A (TNFSF15) in antigen presenting cells. European Journal of Immunology, 2009, 39, 3239-3250.	2.9	76
45	Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nature Medicine, 2022, 28, 766-779.	30.7	70
46	Cdcs1, a Major Colitogenic Locus in Mice, Regulates Innate and Adaptive Immune Response to Enteric Bacterial Antigens. Gastroenterology, 2005, 129, 1473-1484.	1.3	69
47	Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflammatory Bowel Diseases, 2000, 6, 290-302.	1.9	67
48	Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1527-1531.	1.7	66
49	Effects of cholera toxin on macrophage production of co-stimulatory cytokines. European Journal of Immunology, 2001, 31, 64-71.	2.9	61
50	Heritable Susceptibility for Colitis in Mice Induced by IL-10 Deficiency. Inflammatory Bowel Diseases, 2000, 6, 290-302.	1.9	57
51	Downregulation of micro <scp>RNA</scp> â€107 in intestinal <scp>CD</scp> 11c ⁺ myeloid cells in response to microbiota and proinflammatory cytokines increases <scp>IL</scp> â€23p19 expression. European Journal of Immunology, 2014, 44, 673-682.	2.9	52
52	Generation of Antigen-Specific, Foxp3-Expressing CD4+ Regulatory T Cells by Inhibition of APC Proteosome Function. Journal of Immunology, 2005, 174, 2787-2795.	0.8	48
53	Human seroreactivity to gut microbiota antigens. Journal of Allergy and Clinical Immunology, 2015, 136, 1378-1386.e5.	2.9	48
54	Biomarkers of Therapeutic Response in the IL-23 Pathway in Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 2012, 3, e10.	2.5	47

#	Article	IF	CITATIONS
55	Immune response versus mucosal tolerance to mucosally administered antigens. Vaccine, 2005, 23, 1800-1803.	3.8	42
56	Human Microbiota Flagellins Drive Adaptive Immune Responses in Crohn's Disease. Gastroenterology, 2021, 161, 522-535.e6.	1.3	40
57	Enhanced CBir1-specific innate and adaptive immune responses in Crohn's disease. Inflammatory Bowel Diseases, 2008, 14, 1641-1651.	1.9	38
58	Commensal A4 bacteria inhibit intestinal Th2â€cell responses through induction of dendritic cell TGFâ€Î² production. European Journal of Immunology, 2016, 46, 1162-1167.	2.9	38
59	Understanding Immune-Microbial Homeostasis in Intestine. Immunologic Research, 2002, 26, 087-094.	2.9	37
60	Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function. Scientific Reports, 2019, 9, 14724.	3.3	37
61	CD4 ⁺ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Science Immunology, 2020, 5, .	11.9	31
62	Identification of an immunodominant T cell epitope on cholera toxin. European Journal of Immunology, 1996, 26, 2587-2594.	2.9	30
63	The C3H/HeJBir Mouse Model: A High Susceptibility Phenotype for Colitis. International Reviews of Immunology, 2000, 19, 63-75.	3.3	29
64	Single-cell analyses of CD4+ T cells from αβ T cell receptor-transgenic mice: a distinct mucosal cytokine phenotype in the absence of transgene-specific antigen. European Journal of Immunology, 1997, 27, 1774-1781.	2.9	25
65	Animal models of intestinal inflammation: ineffective communication between coalition members. Seminars in Immunopathology, 2005, 27, 233-247.	4.0	25
66	Synchronization of mothers and offspring promotes tolerance and limits allergy. JCI Insight, 2020, 5, .	5.0	25
67	Regulation of Toll-like Receptor 5 Gene Expression and Function on Mucosal Dendritic Cells. PLoS ONE, 2012, 7, e35918.	2.5	24
68	Akkermansia muciniphila is permissive to arthritis in the K/BxN mouse model of arthritis. Genes and Immunity, 2019, 20, 158-166.	4.1	24
69	Strong mucosal adjuvanticity of cholera toxin within lipid particles of a new multiple emulsion delivery system for oral immunization. European Journal of Immunology, 1997, 27, 2720-2725.	2.9	20
70	Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype. PLoS ONE, 2016, 11, e0150943.	2.5	20
71	Challenges in IBD Research: Pragmatic Clinical Research. Inflammatory Bowel Diseases, 2019, 25, S40-S47.	1.9	19
72	Dysregulation of Systemic and Mucosal Humoral Responses to Microbial and Food Antigens as a Factor Contributing to Microbial Translocation and Chronic Inflammation in HIV-1 Infection. PLoS Pathogens, 2017, 13, e1006087.	4.7	19

#	Article	IF	CITATIONS
73	Challenges in IBD Research: Updating the Scientific Agendas. Inflammatory Bowel Diseases, 2003, 9, 137-153.	1.9	18
74	New developments in experimental models of inflammatory bowel disease. Current Opinion in Gastroenterology, 2004, 20, 360-367.	2.3	18
75	Selective Induction of Homeostatic Th17 Cells in the Murine Intestine by Cholera Toxin Interacting with the Microbiota. Journal of Immunology, 2017, 199, 312-322.	0.8	18
76	Oral Tolerance in Humans: Failure to Suppress an Existing Immune Response by Oral Antigen Administration. Annals of the New York Academy of Sciences, 2004, 1029, 299-309.	3.8	16
77	Molecular Approaches to the Role of the Microbiota in Inflammatory Bowel Disease. Annals of the New York Academy of Sciences, 2006, 1072, 39-51.	3.8	16
78	Decreased Fecal Bacterial Diversity and Altered Microbiome in Children Colonized With <i>Clostridium difficile</i> . Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 502-508.	1.8	12
79	CBirTox is a selective antigen-specific agonist of the Treg-IgA-microbiota homeostatic pathway. PLoS ONE, 2017, 12, e0181866.	2.5	10
80	ICOS ligand and IL-10 synergize to promote host–microbiota mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
81	Gene Disruption and Immunity in Experimental Colitis. Inflammatory Bowel Diseases, 2004, 10, S25-S28.	1.9	8
82	Microbiota. Gut Microbes, 2010, 1, 388-391.	9.8	8
83	From Cheese to Pharma: A Designer Probiotic for IBD. Clinical Gastroenterology and Hepatology, 2006, 4, 836-837.	4.4	7
84	Advances in Mucosal Immunity. Drugs, 1997, 54, 13-14.	10.9	4
85	Identification of Prevotella Oralis as a possible target antigen in children with Enthesitis related arthritis. Clinical Immunology, 2020, 216, 108463.	3.2	3
86	Experimental mouse models of inflammatory bowel disease: new insights into pathogenic mechanisms. , 2003, , 67-99.		3
87	Animal Models of Experimental IBD. Inflammatory Bowel Diseases, 2006, 12, S5.	1.9	2
88	The dominant immune response to intestinal bacterial antigens is ignorance, rather than tolerance. Gastroenterology, 2003, 124, A60.	1.3	1
89	Immunologic disease of the gastrointestinal tract. , 2008, , 1099-1114.		1
90	Elucidating the Role of the Interleukin-10 Receptor in Mucosal Inflammation Uncovers a Potential Treatment for Infantile Inflammatory Bowel Disease. Gastroenterology, 2016, 151, 1061-1062.	1.3	0

#	Article	IF	CITATIONS
91	Alterations of T Lymphocytes in Inflammatory Bowel Diseases. Advances in Experimental Medicine and Biology, 2006, 579, 133-148.	1.6	о
92	Moms, babies, and bugs in immune development. F1000Research, 0, 6, 2141.	1.6	0
93	Adherent invasive <i>Escherichia coli</i> in Crohn's disease: guilt by association?. Gut, 2023, 72, 2-3.	12.1	ο