Glynis L Kolling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting changes in renal metabolism after compound exposure with a genome-scale metabolic model. Toxicology and Applied Pharmacology, 2021, 412, 115390.	2.8	10
2	Identifying functional metabolic shifts in heart failure with the integration of omics data and a heart-specific, genome-scale model. Cell Reports, 2021, 34, 108836.	6.4	15
3	Untargeted Metabolomics Reveals Species-Specific Metabolite Production and Shared Nutrient Consumption by Pseudomonas aeruginosa and Staphylococcus aureus. MSystems, 2021, 6, e0048021.	3.8	9
4	Algae-mediated treatment offers apparent removal of a model antibiotic resistance gene. Algal Research, 2021, 60, 102540.	4.6	4
5	Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion. Sensors and Actuators B: Chemical, 2020, 312, 127936.	7.8	20
6	Rapid in Vitro Assessment of Clostridioides difficile Inhibition by Probiotics Using Dielectrophoresis to Quantify Cell Structure Alterations. ACS Infectious Diseases, 2020, 6, 1000-1007.	3.8	18
7	Outcomes of a Multidisciplinary Clinic in Evaluating Recurrent Clostridioides difficile Infection Patients for Fecal Microbiota Transplant: A Retrospective Cohort Analysis. Journal of Clinical Medicine, 2019, 8, 1036.	2.4	10
8	Evaluating the efficacy of an algae-based treatment to mitigate elicitation of antibiotic resistance. Chemosphere, 2019, 237, 124421.	8.2	18
9	Genome-Scale Characterization of Toxicity-Induced Metabolic Alterations in Primary Hepatocytes. Toxicological Sciences, 2019, 172, 279-291.	3.1	15
10	Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification. Electrochimica Acta, 2019, 318, 828-836.	5.2	10
11	A simplified metabolic network reconstruction to promote understanding and development of flux balance analysis tools. Computers in Biology and Medicine, 2019, 105, 64-71.	7.0	21
12	Abundant production of exopolysaccharide by EAEC strains enhances the formation of bacterial biofilms in contaminated sprouts. Gut Microbes, 2018, 9, 264-278.	9.8	13
13	Innate Immune Response and Outcome of Clostridium difficile Infection Are Dependent on Fecal Bacterial Composition in the Aged Host. Journal of Infectious Diseases, 2018, 217, 188-197.	4.0	25
14	Amixicile Reduces Severity of Cryptosporidiosis but Does Not Have In Vitro Activity against Cryptosporidium. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	9
15	Inferring Metabolic Mechanisms of Interaction within a Defined Gut Microbiota. Cell Systems, 2018, 7, 245-257.e7.	6.2	89
16	A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathogens, 2018, 14, e1007083.	4.7	55
17	Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nature Communications, 2017, 8, 14250.	12.8	151
18	Systems-level metabolism of the altered Schaedler flora, a complete gut microbiota. ISME Journal, 2017, 11, 426-438.	9.8	60

GLYNIS L KOLLING

#	Article	IF	CITATIONS
19	Increased Urinary Trimethylamine N-Oxide Following Cryptosporidium Infection and Protein Malnutrition Independent of Microbiome Effects. Journal of Infectious Diseases, 2017, 216, 64-71.	4.0	16
20	Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathogens, 2017, 13, e1006471.	4.7	68
21	Novel co-culture plate enables growth dynamic-based assessment of contact-independent microbial interactions. PLoS ONE, 2017, 12, e0182163.	2.5	19
22	Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model. PLoS Neglected Tropical Diseases, 2016, 10, e0004820.	3.0	26
23	Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutrition Reviews, 2016, 74, 374-386.	5.8	73
24	Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. American Journal of Clinical Nutrition, 2016, 104, 1253-1262.	4.7	83
25	Protein Malnutrition Impairs Intestinal Epithelial Cell Turnover, a Potential Mechanism of Increased Cryptosporidiosis in a Murine Model. Infection and Immunity, 2016, 84, 3542-3549.	2.2	44
26	Treatment of <i>Clostridium difficile</i> infection using SQ641, a capuramycin analogue, increases post-treatment survival and improves clinical measures of disease in a murine model. Journal of Antimicrobial Chemotherapy, 2016, 71, 1300-1306.	3.0	11
27	Vancomycin Treatment Alters Humoral Immunity and Intestinal Microbiota in an Aged Mouse Model of <i>Clostridium difficile</i> Infection. Journal of Infectious Diseases, 2016, 214, 130-139.	4.0	33
28	Metabolic network modeling ofÂmicrobial communities. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 317-334.	6.6	95
29	Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice. Frontiers in Microbiology, 2015, 6, 262.	3.5	5
30	Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model. PLoS ONE, 2015, 10, e0131829.	2.5	31
31	Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative <i>escherichia coli</i> induced diarrhea. Gut Microbes, 2014, 5, 618-627.	9.8	63
32	Role of Leptin-Mediated Colonic Inflammation in Defense against Clostridium difficile Colitis. Infection and Immunity, 2014, 82, 341-349.	2.2	46
33	<i>In Vivo</i> Physiological and Transcriptional Profiling Reveals Host Responses to Clostridium difficile Toxin A and Toxin B. Infection and Immunity, 2013, 81, 3814-3824.	2.2	31
34	Proposal for effective treatment of Shiga toxin-producing Escherichia coli infection in mice. Microbial Pathogenesis, 2013, 65, 57-62.	2.9	6
35	Vancomycin Treatment's Association with Delayed Intestinal Tissue Injury, Clostridial Overgrowth, and Recurrence of Clostridium difficile Infection in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 689-696.	3.2	55
36	The micronutrient zinc inhibits EAEC strain 042 adherence, biofilm formation, virulence gene expression, and epithelial cytokine responses benefiting the infected host. Virulence, 2013, 4, 624-633.	4.4	37

GLYNIS L KOLLING

#	Article	IF	CITATIONS
37	Investigation of Encephalopathy Caused by Shiga Toxin 2c-Producing Escherichia coli Infection in Mice. PLoS ONE, 2013, 8, e58959.	2.5	16
38	Persistent G. lamblia impairs growth in a murine malnutrition model. Journal of Clinical Investigation, 2013, 123, 2672-2684.	8.2	90
39	Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production. Gut Microbes, 2012, 3, 523-529.	9.8	45
40	Amixicile, a Novel Inhibitor of Pyruvate:Ferredoxin Oxidoreductase, Shows Efficacy against Clostridium difficile in a Mouse Infection Model. Antimicrobial Agents and Chemotherapy, 2012, 56, 4103-4111.	3.2	51
41	Enteric pathogens through life stages. Frontiers in Cellular and Infection Microbiology, 2012, 2, 114.	3.9	57
42	Shiga toxin 2-induced intestinal pathology in infant rabbits is A-subunit dependent and responsive to the tyrosine kinase and potential ZAK inhibitor imatinib. Frontiers in Cellular and Infection Microbiology, 2012, 2, 135.	3.9	28
43	Systems analysis of the transcriptional response of human ileocecal epithelial cells to Clostridium difficile toxins and effects on cell cycle control. BMC Systems Biology, 2012, 6, 2.	3.0	17
44	Shiga Toxin 2 Targets the Murine Renal Collecting Duct Epithelium. Infection and Immunity, 2009, 77, 959-969.	2.2	78
45	Immunohistologic techniques for detecting the glycolipid Gb3 in the mouse kidney and nervous system. Histochemistry and Cell Biology, 2008, 130, 157-164.	1.7	20
46	p38 Mitogen-Activated Protein Kinase Mediates Lipopolysaccharide and Tumor Necrosis Factor Alpha Induction of Shiga Toxin 2 Sensitivity in Human Umbilical Vein Endothelial Cells. Infection and Immunity, 2008, 76, 1115-1121.	2.2	22
47	Shiga Toxin 2 Affects the Central Nervous System through Receptor Globotriaosylceramide Localized to Neurons. Journal of Infectious Diseases, 2008, 198, 1398-1406.	4.0	103
48	Influence of enteric bacteria conditioned media on recovery of Escherichia coli O157:H7 exposed to starvation and sodium hypochlorite. Journal of Applied Microbiology, 2007, 103, 1435-1441.	3.1	9
49	Examination of Recovery In Vitro and In Vivo of Nonculturable Escherichia coli O157:H7. Applied and Environmental Microbiology, 2001, 67, 3928-3933.	3.1	42
50	Vesicle-Mediated Transfer of Virulence Genes from Escherichia coli O157:H7 to Other Enteric Bacteria. Applied and Environmental Microbiology, 2000, 66, 4414-4420.	3.1	298
51	Export of Virulence Genes and Shiga Toxin by Membrane Vesicles of <i>Escherichia coli</i> O157:H7. Applied and Environmental Microbiology, 1999, 65, 1843-1848.	3.1	276