Pascale Cossart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Role for Taok2 in <i>Listeria monocytogenes</i> Vacuolar Escape. Journal of Infectious Diseases, 2022, 225, 1005-1010.	4.0	8
2	The corona virus SARS-CoV-2 and the pandemic Covid19. Comptes Rendus - Biologies, 2021, 344, 1-5.	0.2	0
3	Listeriolysin S: A bacteriocin from <i>Listeria monocytogenes</i> that induces membrane permeabilization in a contact-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
4	Internalization Assays for Listeria monocytogenes. Methods in Molecular Biology, 2021, 2220, 189-200.	0.9	1
5	Mitochondrial respiration restricts Listeria monocytogenes infection by slowing down host cell receptor recycling. Cell Reports, 2021, 37, 109989.	6.4	12
6	Pathogenic Biohacking: Induction, Modulation and Subversion of Host Transcriptional Responses by Listeria monocytogenes. Toxins, 2020, 12, 294.	3.4	5
7	Listeria monocytogenes Exploits Mitochondrial Contact Site and Cristae Organizing System Complex Subunit Mic10 To Promote Mitochondrial Fragmentation and Cellular Infection. MBio, 2020, 11, .	4.1	25
8	The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. Nature Communications, 2019, 10, 3005.	12.8	22
9	A Listeria monocytogenes Bacteriocin Can Target the Commensal Prevotella copri and Modulate Intestinal Infection. Cell Host and Microbe, 2019, 26, 691-701.e5.	11.0	66
10	Interaction between Intracellular Bacterial Pathogens and Host Cell Mitochondria. Microbiology Spectrum, 2019, 7, .	3.0	32
11	Ubiquitination of <i>Listeria</i> Virulence Factor InIC Contributes to the Host Response to Infection. MBio, 2019, 10, .	4.1	11
12	The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection. Nature Communications, 2019, 10, 5383.	12.8	63
13	An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host and Microbe, 2019, 26, 823-835.e11.	11.0	55
14	Listeria monocytogenes: cell biology of invasion and intracellular growth. , 2019, , 851-863.		2
15	Microbe Profile: Listeria monocytogenes: a paradigm among intracellular bacterial pathogens. Microbiology (United Kingdom), 2019, 165, 719-721.	1.8	30
16	Lmo1656 is a secreted virulence factor of Listeria monocytogenes that interacts with the sorting nexin 6–BAR complex. Journal of Biological Chemistry, 2018, 293, 9265-9276.	3.4	6
17	A Multicolor Split-Fluorescent Protein Approach to Visualize Listeria Protein Secretion in Infection. Biophysical Journal, 2018, 115, 251-262.	0.5	11
18	Infection Reveals a Modification of SIRT2 Critical for Chromatin Association. Cell Reports, 2018, 23, 1124-1137.	6.4	55

#	Article	IF	CITATIONS
19	The ever-growing complexity of the mitochondrial fission machinery. Cellular and Molecular Life Sciences, 2018, 75, 355-374.	5.4	157
20	Listeriolysin O-dependent host surfaceome remodeling modulatesListeria monocytogenesinvasion. Pathogens and Disease, 2018, 76, .	2.0	11
21	HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13359-13364.	7.1	41
22	<i>Listeria monocytogenes</i> : cell biology of invasion and intracellular growth. Microbiology Spectrum, 2018, 6, .	3.0	63
23	Rapid Remodeling of the Host Epithelial Cell Proteome by the Listeriolysin O (LLO) Pore-forming Toxin. Molecular and Cellular Proteomics, 2018, 17, 1627-1636.	3.8	25
24	Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends in Cell Biology, 2018, 28, 926-940.	7.9	45
25	Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology, 2018, 16, 32-46.	28.6	584
26	RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression. RNA Biology, 2017, 14, 460-470.	3.1	54
27	Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Seminars in Cell and Developmental Biology, 2017, 65, 11-19.	5.0	87
28	Promyelocytic Leukemia Protein (PML) Controls <i>Listeria monocytogenes</i> Infection. MBio, 2017, 8,	4.1	23
29	Listeriolysin S: A bacteriocin from epidemic <i>Listeria monocytogenes</i> strains that targets the gut microbiota. Gut Microbes, 2017, 8, 384-391.	9.8	59
30	N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nature Microbiology, 2017, 2, 17005.	13.3	70
31	Assessing Vacuolar Escape of Listeria Monocytogenes. Methods in Molecular Biology, 2017, 1535, 173-195.	0.9	3
32	How the study of <i>Listeria monocytogenes</i> has led to new concepts in biology. Future Microbiology, 2017, 12, 621-638.	2.0	45
33	Listeriomics: an Interactive Web Platform for Systems Biology of <i>Listeria</i> . MSystems, 2017, 2, .	3.8	37
34	Listeriolysin S Is a Streptolysin S-Like Virulence Factor That Targets Exclusively Prokaryotic Cells <i>In Vivo</i> . MBio, 2017, 8, .	4.1	45
35	Small bacterial and phagic proteins: an updated view on a rapidly moving field. Current Opinion in Microbiology, 2017, 39, 81-88.	5.1	60
36	SUMOylation of human septins is critical for septin filament bundling and cytokinesis. Journal of Cell Biology, 2017, 216, 4041-4052.	5.2	48

#	Article	IF	CITATIONS
37	Regulating Bacterial Virulence with RNA. Annual Review of Microbiology, 2017, 71, 263-280.	7.3	67
38	Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cellular Microbiology, 2017, 19, e12682.	2.1	27
39	The Diverse Family of Arp2/3 Complexes. Trends in Cell Biology, 2017, 27, 93-100.	7.9	94
40	Recent advances in understanding Listeria monocytogenes infection: the importance of subcellular and physiological context. F1000Research, 2017, 6, 1126.	1.6	22
41	Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathogens, 2017, 13, e1006734.	4.7	57
42	Unraveling the evolution and coevolution of small regulatory RNAs and coding genes in Listeria. BMC Genomics, 2017, 18, 882.	2.8	18
43	Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genetics, 2016, 12, e1005898.	3.5	34
44	A role for septin 2 in Drp1â€mediated mitochondrial fission. EMBO Reports, 2016, 17, 858-873.	4.5	85
45	Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science, 2016, 352, aad9822.	12.6	294
46	Cell Biology and Microbiology: A Continuous Cross-Feeding. Trends in Cell Biology, 2016, 26, 469-471.	7.9	1
47	Bacteriocin from epidemic <i>Listeria</i> strains alters the host intestinal microbiota to favor infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5706-5711.	7.1	166
48	Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Seminars in Cell and Developmental Biology, 2016, 60, 155-167.	5.0	37
49	The new bacteriology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150507.	4.0	0
50	A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape. Applied and Environmental Microbiology, 2016, 82, 211-217.	3.1	11
51	ISC15 counteracts Listeria monocytogenes infection. ELife, 2015, 4, .	6.0	89
52	Organelle targeting during bacterial infection: insights from Listeria. Trends in Cell Biology, 2015, 25, 330-338.	7.9	33
53	How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection, 2015, 17, 173-183.	1.9	585
54	PI3-kinase activation is critical for host barrier permissiveness to <i>Listeria monocytogenes</i> . Journal of Experimental Medicine, 2015, 212, 165-183.	8.5	65

#	Article	IF	CITATIONS
55	Unexpected versatility in bacterial riboswitches. Trends in Genetics, 2015, 31, 150-156.	6.7	86
56	Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <i>Listeria</i> Infection and Reveals Different Actin Nucleation Mechanisms during <i>Listeria</i> Cell Invasion and Actin Comet Tail Formation. MBio, 2015, 6, e00598-15.	4.1	61
57	Intracellular Bacteria Find the Right Motion. Cell, 2015, 161, 199-200.	28.9	7
58	The <i>Legionella</i> Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway. MBio, 2015, 6, e00354-15.	4.1	76
59	Phosphoinositides and host–pathogen interactions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 911-918.	2.4	49
60	Bacterial and cellular RNAs at work during <i>Listeria</i> infection. Future Microbiology, 2014, 9, 1025-1037.	2.0	18
61	A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.	3.5	76
62	Listeria monocytogenes Dampens the DNA Damage Response. PLoS Pathogens, 2014, 10, e1004470.	4.7	41
63	Structural Basis for the Inhibition of the Chromatin Repressor BAHD1 by the Bacterial Nucleomodulin LntA. MBio, 2014, 5, e00775-13.	4.1	38
64	Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity. MBio, 2014, 5, e00969-14.	4.1	201
65	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	2.8	38
66	Endocytosis of Viruses and Bacteria. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016972-a016972.	5.5	320
67	Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nature Immunology, 2014, 15, 717-726.	14.5	311
68	Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proceedings of the United States of America, 2014, 111, 12432-12437.	7.1	153
69	Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science, 2014, 345, 940-943.	12.6	145
70	A trip in the "New Microbiology―with the bacterial pathogen <i>Listeria monocytogenes</i> . FEBS Letters, 2014, 588, 2437-2445.	2.8	83
71	The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Frontiers in Cellular and Infection Microbiology, 2014, 4, 50.	3.9	86
72	Internalization Assays for Listeria monocytogenes. Methods in Molecular Biology, 2014, 1157, 167-178.	0.9	24

#	Article	IF	CITATIONS
73	A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection. Science, 2013, 341, 1238858.	12.6	226
74	A riboswitch-regulated antisense RNA in <i>Listeria monocytogenes</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13132-13137.	7.1	106
75	The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nature Reviews Microbiology, 2013, 11, 75-82.	28.6	152
76	The Intestinal Microbiota Interferes with the microRNA Response upon Oral <i>Listeria</i> Infection. MBio, 2013, 4, e00707-13.	4.1	72
77	ActA Promotes Listeria monocytogenes Aggregation, Intestinal Colonization and Carriage. PLoS Pathogens, 2013, 9, e1003131.	4.7	133
78	Three-dimensional architecture of actin filaments in <i>Listeria monocytogenes</i> comet tails. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20521-20526.	7.1	81
79	Atypical mitochondrial fission upon bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16003-16008.	7.1	118
80	Listeria and autophagy escape. Autophagy, 2012, 8, 132-134.	9.1	36
81	Phosphatidylinositol 5-Phosphatase Oculocerebrorenal Syndrome of Lowe Protein (OCRL) Controls Actin Dynamics during Early Steps of Listeria monocytogenes Infection. Journal of Biological Chemistry, 2012, 287, 13128-13136.	3.4	36
82	Impact of lactobacilli on orally acquired listeriosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16684-16689.	7.1	111
83	Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta. PLoS ONE, 2012, 7, e39080.	2.5	85
84	Listeriolysin O: the Swiss army knife of Listeria. Trends in Microbiology, 2012, 20, 360-368.	7.7	251
85	Epigenetics and Bacterial Infections. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a010272-a010272.	6.2	296
86	Entry of Listeria monocytogenes in Mammalian Epithelial Cells: An Updated View. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a010009-a010009.	6.2	230
87	Role for Telomerase in Listeria monocytogenes Infection. Infection and Immunity, 2012, 80, 4257-4263.	2.2	17
88	A Common Clathrinâ€Mediated Machinery Coâ€ordinates Cell–Cell Adhesion and Bacterial Internalization. Traffic, 2012, 13, 1653-1666.	2.7	30
89	Septins: the fourth component of the cytoskeleton. Nature Reviews Molecular Cell Biology, 2012, 13, 183-194.	37.0	641
90	Both TLR2 and TRIF Contribute to Interferon-Î ² Production during Listeria Infection. PLoS ONE, 2012, 7, e33299.	2.5	57

#	Article	IF	CITATIONS
91	Comparative transcriptomics of pathogenic and nonâ€pathogenic <i>Listeria</i> species. Molecular Systems Biology, 2012, 8, 583.	7.2	269
92	The non-coding RNA world of the bacterial pathogenListeria monocytogenes. RNA Biology, 2012, 9, 372-378.	3.1	54
93	Bacterial autophagy: restriction or promotion of bacterial replication?. Trends in Cell Biology, 2012, 22, 283-291.	7.9	70
94	When bacteria target the nucleus: the emerging family of nucleomodulins. Cellular Microbiology, 2012, 14, 622-633.	2.1	145
95	The Timing of IFNÎ ² Production Affects Early Innate Responses to Listeria monocytogenes and Determines the Overall Outcome of Lethal Infection. PLoS ONE, 2012, 7, e43455.	2.5	22
96	A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response. Science, 2011, 331, 1319-1321.	12.6	171
97	A Role for Septins in the Interaction between the Listeria monocytogenes Invasion Protein InlB and the Met Receptor. Biophysical Journal, 2011, 100, 1949-1959.	0.5	81
98	K ⁺ Efflux Is Required for Histone H3 Dephosphorylation by Listeria monocytogenes Listeriolysin O and Other Pore-Forming Toxins. Infection and Immunity, 2011, 79, 2839-2846.	2.2	98
99	Cell biology and immunology of <i>Listeria monocytogenes</i> infections: novel insights. Immunological Reviews, 2011, 240, 160-184.	6.0	142
100	OatA, a Peptidoglycan O-Acetyltransferase Involved in Listeria monocytogenes Immune Escape, Is Critical for Virulence. Journal of Infectious Diseases, 2011, 204, 731-740.	4.0	98
101	Transcytosis of <i>Listeria monocytogenes</i> across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. Journal of Experimental Medicine, 2011, 208, 2263-2277.	8.5	217
102	Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. Journal of Cell Biology, 2011, 195, 525-536.	5.2	99
103	<i>Listeria monocytogenes</i> transiently alters mitochondrial dynamics during infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3612-3617.	7.1	205
104	Illuminating the landscape of host–pathogen interactions with the bacterium <i>Listeria monocytogenes</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19484-19491.	7.1	288
105	Impenetrable barriers or entry portals? The role of cell–cell adhesion during infection. Journal of Cell Biology, 2011, 195, 349-358.	5.2	76
106	LipA, a Tyrosine and Lipid Phosphatase Involved in the Virulence of Listeria monocytogenes. Infection and Immunity, 2011, 79, 2489-2498.	2.2	31
107	Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy. PLoS Pathogens, 2011, 7, e1002168.	4.7	148
108	Manipulation of host membrane machinery by bacterial pathogens. Current Opinion in Cell Biology, 2010, 22, 547-554.	5.4	75

#	Article	IF	CITATIONS
109	Postâ€ŧranslational modifications in host cells during bacterial infection. FEBS Letters, 2010, 584, 2748-2758.	2.8	114
110	Clathrinâ€mediated endocytosis: What works for small, also works for big. BioEssays, 2010, 32, 496-504.	2.5	42
111	Listeria monocytogenes impairs SUMOylation for efficient infection. Nature, 2010, 464, 1192-1195.	27.8	201
112	Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study <i>Listeria monocytogenes</i> Infection Processes. Applied and Environmental Microbiology, 2010, 76, 3625-3636.	3.1	67
113	The <i>Listeria monocytogenes</i> InIC protein interferes with innate immune responses by targeting the lκB kinase subunit IKKI±. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17333-17338.	7.1	90
114	Tetraspanin CD81 Is Required for <i>Listeria monocytogenes</i> Invasion. Infection and Immunity, 2010, 78, 204-209.	2.2	40
115	SUMOylation and bacterial pathogens. Virulence, 2010, 1, 532-534.	4.4	20
116	Pathogen-Mediated Posttranslational Modifications: A Re-emerging Field. Cell, 2010, 143, 694-702.	28.9	169
117	Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures. Cell Host and Microbe, 2010, 8, 433-444.	11.0	229
118	Septins Regulate Bacterial Entry into Host Cells. PLoS ONE, 2009, 4, e4196.	2.5	81
119	Human BAHD1 promotes heterochromatic gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13826-13831.	7.1	83
120	Septin 11 Restricts InlB-mediated Invasion by Listeria. Journal of Biological Chemistry, 2009, 284, 11613-11621.	3.4	52
121	In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence Factors Involved in Infection. PLoS Pathogens, 2009, 5, e1000449.	4.7	189
122	Cytoskeleton rearrangements during <i>Listeria</i> infection: Clathrin and septins as new players in the game. Cytoskeleton, 2009, 66, 816-823.	4.4	37
123	The Listeria transcriptional landscape from saprophytism to virulence. Nature, 2009, 459, 950-956.	27.8	841
124	<i>Listeria monocytogenes</i> internalin and E-cadherin: from structure to pathogenesis. Cellular Microbiology, 2009, 11, 693-702.	2.1	90
125	HadA is an atypical new multifunctional trimeric coiled-coil adhesin ofHaemophilus influenzaebiogroupaegyptius, which promotes entry into host cells. Cellular Microbiology, 2009, 11, 1044-1063.	2.1	35
126	<i>Candida albicans</i> internalization by host cells is mediated by a clathrin-dependent mechanism. Cellular Microbiology, 2009, 11, 1179-1189.	2.1	128

#	Article	IF	CITATIONS
127	<i>Listeria monocytogenes</i> Membrane Trafficking and Lifestyle: The Exception or the Rule?. Annual Review of Cell and Developmental Biology, 2009, 25, 649-670.	9.4	48
128	A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes. Cell, 2009, 139, 770-779.	28.9	347
129	Listeria monocytogenes, a unique model in infection biology: an overview. Microbes and Infection, 2008, 10, 1041-1050.	1.9	190
130	Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature, 2008, 455, 1114-1118.	27.8	233
131	Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of <i>Listeria monocytogenes </i> . Cellular Microbiology, 2008, 10, 2208-2222.	2.1	105
132	The actin propulsive machinery: The proteome of Listeria monocytogenes tails. Biochemical and Biophysical Research Communications, 2008, 375, 194-199.	2.1	28
133	Histone Modifications and Chromatin Remodeling during Bacterial Infections. Cell Host and Microbe, 2008, 4, 100-109.	11.0	195
134	The <i>Listeria monocytogenes</i> Virulence Factor InlJ Is Specifically Expressed In Vivo and Behaves as an Adhesin. Infection and Immunity, 2008, 76, 1368-1378.	2.2	72
135	Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Research, 2007, 35, 962-974.	14.5	220
136	Functional Genomic Studies of the Intestinal Response to a Foodborne Enteropathogen in a Humanized Gnotobiotic Mouse Model. Journal of Biological Chemistry, 2007, 282, 15065-15072.	3.4	75
137	<i>Listeria monocytogenes</i> Evades Killing by Autophagy During Colonization of Host Cells. Autophagy, 2007, 3, 442-451.	9.1	229
138	Invasive and Adherent Bacterial Pathogens Co-Opt Host Clathrin for Infection. Cell Host and Microbe, 2007, 2, 340-351.	11.0	198
139	Small noncoding RNAs controlling pathogenesis. Current Opinion in Microbiology, 2007, 10, 182-188.	5.1	215
140	A critical role for peptidoglycan N-deacetylation in <i>Listeria</i> evasion from the host innate immune system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 997-1002.	7.1	329
141	Histone modifications induced by a family of bacterial toxins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13467-13472.	7.1	247
142	A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cellular Microbiology, 2007, 9, 790-803.	2.1	61
143	Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cellular Microbiology, 2007, 9, 2381-2390.	2.1	69
144	Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells. Cellular Microbiology, 2007, 9, 2629-2643.	2.1	85

#	Article	IF	CITATIONS
145	Bacterial Adhesion and Entry into Host Cells. Cell, 2006, 124, 715-727.	28.9	782
146	Subversion of cellular functions byListeria monocytogenes. Journal of Pathology, 2006, 208, 215-223.	4.5	102
147	Listeria monocytogenes: a multifaceted model. Nature Reviews Microbiology, 2006, 4, 423-434.	28.6	513
148	The role of clathrin-dependent endocytosis in bacterial internalization. Trends in Cell Biology, 2006, 16, 499-504.	7.9	106
149	Control ofListeriaSuperoxide Dismutase by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 31812-31822.	3.4	121
150	Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biology, 2005, 7, 894-900.	10.3	295
151	ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nature Cell Biology, 2005, 7, 954-960.	10.3	106
152	Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO Journal, 2005, 24, 2827-2838.	7.8	181
153	Translation elongation factor EFâ€Tu is a target for Stp, a serineâ€ŧhreonine phosphatase involved in virulence of <i>Listeria monocytogenes</i> . Molecular Microbiology, 2005, 56, 383-396.	2.5	98
154	Ubiquitination of intracellular bacteria: a new bacteria-sensing system?. Trends in Cell Biology, 2005, 15, 2-5.	7.9	19
155	WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. Journal of Cell Science, 2005, 118, 1537-1547.	2.0	94
156	Actin-based motility of intracellular pathogens. Current Opinion in Microbiology, 2005, 8, 35-45.	5.1	332
157	Ku70, a Component of DNA-Dependent Protein Kinase, Is a Mammalian Receptor for Rickettsia conorii. Cell, 2005, 123, 1013-1023.	28.9	184
158	Role of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. Journal of Cell Biology, 2004, 166, 743-753.	5.2	160
159	Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. Journal of Cell Science, 2004, 117, 5097-5106.	2.0	119
160	Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6152-6157.	7.1	210
161	Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biology, 2004, 6, 1026-1033.	10.3	125
162	The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature, 2004, 427, 457-461.	27.8	245

#	Article	IF	CITATIONS
163	Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. Comptes Rendus - Biologies, 2004, 327, 115-123.	0.2	24
164	Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens. Science, 2004, 304, 242-248.	12.6	890
165	Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Molecular Microbiology, 2003, 47, 1613-1625.	2.5	290
166	Listeriolysin O-Mediated Calcium Influx Potentiates Entry of Listeria monocytogenes into the Human Hep-2 Epithelial Cell Line. Infection and Immunity, 2003, 71, 3614-3618.	2.2	119
167	An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes. Cell, 2002, 110, 551-561.	28.9	592
168	Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends in Microbiology, 2002, 10, 238-245.	7.7	301
169	Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the interintering intestinal and hepatic phases of listeriosis. Molecular Microbiology, 2002, 45, 1095-1106.	2.5	307
170	Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cellular Microbiology, 2002, 4, 101-115.	2.1	85
171	A Transgenic Model for Listeriosis: Role of Internalin in Crossing the Intestinal Barrier. Science, 2001, 292, 1722-1725.	12.6	566
172	Listeria Protein ActA Mimics WASP Family Proteins:Â It Activates Filament Barbed End Branching by Arp2/3 Complex. Biochemistry, 2001, 40, 11390-11404.	2.5	112
173	A role for cofilin and LIM kinase in Listeria-induced phagocytosis. Journal of Cell Biology, 2001, 155, 101-112.	5.2	187
174	Listeria monocytogenes ActA protein interacts with phosphatidylinositol 4,5-bisphosphate in vitro. Cytoskeleton, 2000, 45, 58-66.	4.4	25
175	Actin-based motility of pathogens: the Arp2/3 complex is a central player. Microreview. Cellular Microbiology, 2000, 2, 195-205.	2.1	132
176	The invasion protein InlB from Listeria monocytogenes activates PLC-gamma1 downstream from PI 3-kinase. Cellular Microbiology, 2000, 2, 465-476.	2.1	44
177	The Listeria monocytogenes Protein InlB Is an Agonist of Mammalian Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 1999, 274, 17025-17032.	3.4	169
178	A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO Journal, 1999, 18, 3956-3963.	7.8	442
179	PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Molecular Microbiology, 1999, 34, 552-561.	2.5	62
180	The <i>inlA</i> Gene of <i>Listeria monocytogenes</i> LO28 Harbors a Nonsense Mutation Resulting in Release of Internalin. Infection and Immunity, 1998, 66, 3420-3422.	2.2	106

#	Article	IF	CITATIONS
181	E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells. Cell, 1996, 84, 923-932.	28.9	832
182	Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family. Molecular Microbiology, 1995, 16, 251-261.	2.5	464
183	Actin-based motility of vaccinia virus. Nature, 1995, 378, 636-638.	27.8	416
184	Actin-based bacterial motility. Current Opinion in Cell Biology, 1995, 7, 94-101.	5.4	108