Abigail S. Tucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855086/publications.pdf

Version: 2024-02-01

66343 69250 6,959 145 42 77 citations h-index g-index papers 152 152 152 5464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cryptophthalmos, dental anomalies, oral vestibule defect, and a novel FREM2 mutation. Journal of Human Genetics, 2022, 67, 115-118.	2.3	6
2	Identification and characterisation of spontaneous mutations causing deafness from a targeted knockout programme. BMC Biology, 2022, 20, 67.	3.8	0
3	Expanding genotypic and phenotypic spectrums of <scp><i>LTBP3</i></scp> variants in dental anomalies and short stature syndrome. Clinical Genetics, 2022, 102, 66-71.	2.0	5
4	Salivary Gland Development in Culture. Methods in Molecular Biology, 2022, 2403, 277-294.	0.9	1
5	A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Reports, 2022, 39, 110663.	6.4	15
6	Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes. Cartilage, 2021, 13, 956S-968S.	2.7	5
7	Characteristics of aquaporin 1, 3, and 5 expression during early murine salivary gland development. Journal of Anatomy, 2021, 238, 794-806.	1.5	7
8	B.BerkovitzR. P.ShellisThe Teeth of Mammalian Vertebrates. Elsevier, published 17th August 2018. Hardcover ISBN:9780128028186. eBook ISBN:9780128028193 Journal of Anatomy, 2021, 238, 215-215.	1.5	0
9	Inhibition of Aurora Kinase B activity disrupts development and differentiation of salivary glands. Cell Death Discovery, 2021, 7, 16.	4.7	10
10	Craniofacial transitions: the role of EMT and MET during head development. Development (Cambridge), 2021, 148, .	2.5	9
11	The Intertwined Evolution and Development of Sutures and Cranial Morphology. Frontiers in Cell and Developmental Biology, 2021, 9, 653579.	3.7	31
12	Editorial: Contemporary Models in Ectodermal Organ Development, Maintenance and Regeneration. Frontiers in Physiology, 2021, 12, 758271.	2.8	1
13	Comparing development and regeneration in the submandibular gland highlights distinct mechanisms. Journal of Anatomy, 2021, 238, 1371-1385.	1.5	5
14	Getting out of an egg: Merging of tooth germs to create an egg tooth in the snake. Developmental Dynamics, 2020, 249, 199-208.	1.8	9
15	Developmental mechanisms driving complex tooth shape in reptiles. Developmental Dynamics, 2020, 249, 441-464.	1.8	16
16	Developmental aspects of the tympanic membrane: Shedding light on function and disease. Genesis, 2020, 58, e23348.	1.6	18
17	Development of the Vestibular Lamina in Human Embryos: Morphogenesis and Vestibule Formation. Frontiers in Physiology, 2020, 11, 753.	2.8	4
18	Epithelial dynamics shed light on mechanisms underlying ear canal defects. Development (Cambridge), 2020, 147, .	2.5	11

#	Article	IF	Citations
19	A comparison of metrics for quantifying cranial suture complexity. Journal of the Royal Society Interface, 2020, 17, 20200476.	3.4	10
20	Balance Between Tooth Size and Tooth Number Is Controlled by Hyaluronan. Frontiers in Physiology, 2020, 11, 996.	2.8	8
21	Diverse Fate of an Enigmatic Structure: 200 Years of Meckel's Cartilage. Frontiers in Cell and Developmental Biology, 2020, 8, 821.	3.7	28
22	An Essential Requirement for Fgf10 in Pinna Extension Sheds Light on Auricle Defects in LADD Syndrome. Frontiers in Cell and Developmental Biology, 2020, 8, 609643.	3.7	6
23	Reawakening of Ancestral Dental Potential as a Mechanism to Explain Dental Pathologies. Integrative and Comparative Biology, 2020, 60, 619-629.	2.0	8
24	The TMJ Disc Is a Common Ancestral Feature in All Mammals, as Evidenced by the Presence of a Rudimentary Disc During Monotreme Development. Frontiers in Cell and Developmental Biology, 2020, 8, 356.	3.7	6
25	Anatomy and Development of the Mammalian External Auditory Canal: Implications for Understanding Canal Disease and Deformity. Frontiers in Cell and Developmental Biology, 2020, 8, 617354.	3.7	9
26	Transient role of the middle ear as a lower jaw support across mammals. ELife, 2020, 9, .	6.0	15
27	FGF10 is an essential regulator of tracheal submucosal gland morphogenesis. Developmental Biology, 2019, 451, 158-166.	2.0	7
28	Revitalising the rudimentary replacement dentition in the mouse. Development (Cambridge), 2019, 146, .	2.5	33
29	Mapping the distribution of stem/progenitor cells across the middle ear during homeostasis and inflammation. Development (Cambridge), $2018,145,.$	2.5	15
30	Nr2fs Take the Upper Hand in the Upper Jaw. Developmental Cell, 2018, 44, 275-276.	7.0	0
31	Activation of Pro-apoptotic Caspases in Non-apoptotic Cells During Odontogenesis and Related Osteogenesis. Frontiers in Physiology, 2018, 9, 174.	2.8	27
32	Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile. Journal of the Royal Society Interface, 2018, 15, 20180039.	3.4	19
33	A new developmental mechanism for the separation of the mammalian middle ear ossicles from the jaw. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162416.	2.6	44
34	Fgf10-Sox9 are essential for establishment of distal progenitor cells during salivary gland development. Development (Cambridge), 2017, 144, 2294-2305.	2.5	79
35	Meckel's cartilage breakdown offers clues to mammalian middle ear evolution. Nature Ecology and Evolution, 2017, 1, 93.	7.8	43
36	Major evolutionary transitions and innovations: the tympanic middle ear. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150483.	4.0	43

#	Article	IF	Citations
37	The Impact of the <i>Eda </i> Pathway on Tooth Root Development. Journal of Dental Research, 2017, 96, 1290-1297.	5.2	39
38	Q&A: Morphological insights into evolution. BMC Biology, 2017, 15, 83.	3.8	2
39	Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. ELife, 2017, 6, .	6.0	54
40	A Critique of the Toxicoferan Hypothesis. Toxinology, 2017, , 69-86.	0.2	0
41	Multiple Cranial Organ Defects after Conditionally Knocking Out Fgf10 in the Neural Crest. Frontiers in Physiology, 2016, 7, 488.	2.8	45
42	FGF and EDA pathways control initiation and branching of distinct subsets of developing nasal glands. Developmental Biology, 2016, 419, 348-356.	2.0	8
43	Introduction. Journal of Anatomy, 2016, 228, 215-216.	1.5	0
44	Impact of hypofunctional occlusion on upper and lower molars after cessation of root development in adult mice. European Journal of Orthodontics, 2016, 39, cjw051.	2.4	1
45	Complex patterns of tooth replacement revealed in the fruit bat (Eidolon helvum). Journal of Anatomy, 2016, 229, 847-856.	1.5	16
46	Apoptosis-associated protein expression in human salivary gland morphogenesis. Archives of Oral Biology, 2016, 69, 71-81.	1.8	14
47	Apoptosis in Early Salivary Gland Duct Morphogenesis and Lumen Formation. Journal of Dental Research, 2016, 95, 277-283.	5.2	26
48	Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development (Cambridge), 2016, 143, 670-81.	2,5	48
49	Understanding the development of the respiratory glands. Developmental Dynamics, 2015, 244, 525-539.	1.8	15
50	Epithelial topography for repetitive tooth formation. Biology Open, 2015, 4, 1625-1634.	1.2	20
51	Fate of the Molar Dental Lamina in the Monophyodont Mouse. PLoS ONE, 2015, 10, e0127543.	2.5	25
52	Development and Integration of the Ear. Current Topics in Developmental Biology, 2015, 115, 213-232.	2,2	30
53	Species-specific modifications of mandible shape reveal independent mechanisms for growth and initiation of the coronoid. EvoDevo, 2015, 6, 35.	3.2	36
54	A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome. Human Molecular Genetics, 2015, 24, 1869-1882.	2.9	23

#	Article	IF	CITATIONS
55	Developmental mechanisms underlying differential claw expression in the autopodia of geckos. EvoDevo, 2015, 6, 8.	3.2	15
56	Role of c-Myb in chondrogenesis. Bone, 2015, 76, 97-106.	2.9	8
57	Root and Eruption Defects in <i>c-Fos</i> Mice Are Driven by Loss of Osteoclasts. Journal of Dental Research, 2015, 94, 1724-1731.	5.2	21
58	Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. Journal of Molecular Histology, 2015, 46, 443-455.	2.2	6
59	A Critique of the Toxicoferan Hypothesis. , 2015, , 1-15.		0
60	Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia. Current Molecular Medicine, 2015, 15, 674-82.	1.3	12
61	Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death and Disease, 2014, 5, e1366-e1366.	6.3	34
62	The development of complex tooth shape in reptiles. Frontiers in Physiology, 2014, 5, 74.	2.8	46
63	Evolution and developmental diversity of tooth regeneration. Seminars in Cell and Developmental Biology, 2014, 25-26, 71-80.	5.0	89
64	Embryonic bauplans and the developmental origins of facial diversity and constraint. Development (Cambridge), 2014, 141, 1059-1063.	2.5	112
65	Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus). Archives of Oral Biology, 2013, 58, 118-133.	1.8	53
66	Interactions of the Tooth and Bone during Development. Journal of Dental Research, 2013, 92, 1129-1135.	5.2	45
67	Dual Origin of the Epithelium of the Mammalian Middle Ear. Science, 2013, 339, 1453-1456.	12.6	86
68	Caspaseâ€7 participates in differentiation of cells forming dental hard tissues. Development Growth and Differentiation, 2013, 55, 615-621.	1.5	30
69	Phenotype variation in Treacher Collins Syndrome: from missense to splice site mutations. British Journal of Oral and Maxillofacial Surgery, 2013, 51, 276-277.	0.8	0
70	Craniofacial development: current concepts in the molecular basis of Treacher Collins syndrome. British Journal of Oral and Maxillofacial Surgery, 2013, 51, 384-388.	0.8	40
71	The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling. BMC Biology, 2013, 11, 27.	3.8	35
72	Evolution of the mammalian middle ear and jaw: adaptations and novel structures. Journal of Anatomy, 2013, 222, 147-160.	1.5	117

#	Article	IF	Citations
73	Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10. Biology Open, 2013, 2, 981-989.	1.2	41
74	The Slice Culture Method for Following Development of Tooth Germs In Explant Culture. Journal of Visualized Experiments, 2013, , e50824.	0.3	19
75	Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome. PLoS ONE, 2013, 8, e80104.	2.5	23
76	Organized Emergence of Multiple-Generations of Teeth in Snakes Is Dysregulated by Activation of Wnt/Beta-Catenin Signalling. PLoS ONE, 2013, 8, e74484.	2.5	48
77	Apoptotic Signaling in Mouse Odontogenesis. OMICS A Journal of Integrative Biology, 2012, 16, 60-70.	2.0	26
78	Embryonic development of the monitor lizard, Varanus indicus. Amphibia - Reptilia, 2012, 33, 451-468.	0.5	32
79	Caspase-7 in molar tooth development. Archives of Oral Biology, 2012, 57, 1474-1481.	1.8	17
80	Distinct spatiotemporal roles of hedgehog signalling during chick and mouse cranial base and axial skeleton development. Developmental Biology, 2012, 371, 203-214.	2.0	21
81	Tooth development in a model reptile: functional and null generation teeth in the gecko <i>Paroedura picta</i> . Journal of Anatomy, 2012, 221, 195-208.	1.5	35
82	Localization of câ€ <scp>MYB</scp> in differentiated cells during postnatal molar and alveolar bone development. European Journal of Oral Sciences, 2012, 120, 495-504.	1.5	12
83	The effect of caspase-3 inhibition on interdigital tissue regression in explant cultures of developing mouse limbs. Animal Cells and Systems, 2012, 16, 295-301.	2.2	5
84	Early Regression of the Dental Lamina Underlies the Development of Diphyodont Dentitions. Journal of Dental Research, 2012, 91, 491-498.	5.2	68
85	Molecular biology of the mammalian dentary: insights into how complex skeletal elements can be shaped during development and evolution., 2012,, 207-229.		5
86	Lineage tracing of the endoderm during oral development. Developmental Dynamics, 2012, 241, 1183-1191.	1.8	95
87	The origin of the stapes and relationship to the otic capsule and oval window. Developmental Dynamics, 2012, 241, 1396-1404.	1.8	53
88	Fate map of the dental mesenchyme: Dynamic development of the dental papilla and follicle. Developmental Biology, 2012, 366, 244-254.	2.0	42
89	Defects and rescue of the minor salivary glands in Eda pathway mutants. Developmental Biology, 2011, 349, 137-146.	2.0	17
90	Shh signalling restricts the expression of Gcm2 and controls the position of the developing parathyroids. Developmental Biology, 2011, 353, 194-205.	2.0	32

#	Article	IF	Citations
91	Contribution of mesoderm to the developing dental papilla. International Journal of Developmental Biology, 2011, 55, 59-64.	0.6	50
92	Expression and characterization of c-Myb in prenatal odontogenesis. Development Growth and Differentiation, 2011, 53, 793-803.	1.5	16
93	Tooth-bone morphogenesis during postnatal stages of mouse first molar development. Journal of Anatomy, 2011, 218, 699-716.	1.5	69
94	Morphogenesis and bone integration of the mouse mandibular third molar. European Journal of Oral Sciences, 2011, 119, 265-274.	1.5	28
95	Morphology and regression of the dental lamina. Developmental Biology, 2011, 356, 254-255.	2.0	2
96	Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre―and postnatal tooth development. Developmental Dynamics, 2010, 239, 160-167.	1.8	95
97	Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected samples. Archives of Oral Biology, 2010, 55, 570-575.	1.8	9
98	Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Developmental Dynamics, 2010, 239, 2674-2684.	1.8	23
99	Title Pages / List of Contents / Preface. Frontiers of Oral Biology, 2010, , I-VII.	1.5	0
100	Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse. Human Molecular Genetics, 2010, 19, 1551-1560.	2.9	40
101	A role for suppressed incisor cuspal morphogenesis in the evolution of mammalian heterodont dentition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 92-97.	7.1	51
102	Salivary Gland Adaptations: Modification of the Glands for Novel Uses. Frontiers of Oral Biology, 2010, 14, 21-31.	1.5	21
103	The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Seminars in Cell and Developmental Biology, 2010, 21, 325-332.	5.0	114
104	Amelogenin in cranioâ€facial development: the tooth as a model to study the role of amelogenin during embryogenesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 445-457.	1.3	34
105	Contribution of the tooth bud mesenchyme to alveolar bone. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 510-517.	1.3	49
106	Current knowledge of tooth development: patterning and mineralization of the murine dentition. Journal of Anatomy, 2009, 214, 502-515.	1.5	138
107	Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. Journal of Anatomy, 2009, 214, 477-501.	1.5	109
108	Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Developmental Biology, 2009, 328, 493-505.	2.0	54

#	Article	IF	Citations
109	High yield expression of biologically active recombinant full length human tuftelin protein in baculovirus-infected insect cells. Protein Expression and Purification, 2009, 68, 90-98.	1.3	12
110	The role of transforming growth factor $\hat{\mathbf{e}}_{\mathbf{i}^2}$ signalling in the patterning of the proximal processes of the murine dentary. Developmental Dynamics, 2008, 237, 1604-1613.	1.8	28
111	Mouse models of tooth abnormalities. European Journal of Oral Sciences, 2008, 116, 1-10.	1.5	66
112	Viperous fangs: Development and evolution of the venom canal. Mechanisms of Development, 2008, 125, 786-796.	1.7	38
113	Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling. Developmental Biology, 2008, 319, 132-145.	2.0	87
114	A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Developmental Biology, 2008, 320, 39-48.	2.0	45
115	Tooth Agenesis: from Molecular Genetics to Molecular Dentistry. Journal of Dental Research, 2008, 87, 617-623.	5.2	179
116	Salivary gland development. Seminars in Cell and Developmental Biology, 2007, 18, 237-244.	5.0	290
117	Sonic hedgehog in the pharyngeal endoderm controls arch pattern via regulation of Fgf8 in head ectoderm. Developmental Biology, 2007, 303, 244-258.	2.0	81
118	Incudomalleal joint formation: the roles of apoptosis, migration and downregulation. BMC Developmental Biology, 2007, 7, 134.	2.1	27
119	Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice. Archives of Oral Biology, 2007, 52, 15-19.	1.8	18
120	Molar tooth development in caspase-3 deficient mice. International Journal of Developmental Biology, 2006, 50, 491-7.	0.6	24
121	Joint formation in the middle ear: Lessons from the mouse and guinea pig. Developmental Dynamics, 2006, 235, 1326-1333.	1.8	45
122	Apoptosis-related factors (Fas receptor, Fas ligand, FADD) in early tooth development of the field vole (Microtus agrestis). Archives of Oral Biology, 2005, 50, 165-169.	1.8	14
123	Cell lineage of primary and secondary enamel knots. Developmental Dynamics, 2005, 233, 754-759.	1.8	62
124	Organized Tooth-specific Cellular Differentiation Stimulated by BMP4. Journal of Dental Research, 2005, 84, 603-606.	5.2	44
125	Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Development (Cambridge), 2004, 131, 1235-1245.	2.5	108
126	Neural crest cells provide species-specific patterning information in the developing branchial skeleton. Evolution & Development, 2004, 6, 32-40.	2.0	84

#	Article	IF	Citations
127	The cutting-edge of mammalian development; how the embryo makes teeth. Nature Reviews Genetics, 2004, 5, 499-508.	16.3	525
128	Traf6 is essential for murine tooth cusp morphogenesis. Developmental Dynamics, 2004, 229, 131-135.	1.8	50
129	Ror2knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Developmental Dynamics, 2004, 229, 400-410.	1.8	113
130	Independent induction and formation of the dorsal and ventral fins inXenopus laevis. Developmental Dynamics, 2004, 230, 461-467.	1.8	35
131	Death in the Life of a Tooth. Journal of Dental Research, 2004, 83, 11-16.	5.2	76
132	Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. Developmental Biology, 2004, 266, 138-150.	2.0	109
133	The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Developmental Biology, 2004, 268, 185-194.	2.0	135
134	Apoptosis of Premigratory Neural Crest Cells in Rhombomeres 3 and 5: Consequences for Patterning of the Branchial Region. Developmental Biology, 2002, 251, 118-128.	2.0	26
135	Tooth development is independent of a Hox patterning programme. Developmental Dynamics, 2002, 225, 332-335.	1.8	36
136	No evidence for ventrally migrating neural tube cells from the mid- and hindbrain. Developmental Dynamics, 2002, 223, 163-167.	1.8	42
137	Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature, 2001, 414, 913-916.	27.8	342
138	Molecular Genetics of Tooth Morphogenesis and Patterning: The Right Shape in the Right Place. Journal of Dental Research, 1999, 78, 826-834.	5.2	194
139	Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. Developmental Dynamics, 1998, 212, 533-539.	1.8	150
140	Transformation of Tooth Type Induced by Inhibition of BMP Signaling. Science, 1998, 282, 1136-1138.	12.6	392
141	Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes and Development, 1998, 12, 2636-2649.	5.9	181
142	Molecular control of odontogenic patterning: positional dependent initiation and morphogenesis. European Journal of Oral Sciences, 1998, 106, 44-47.	1.5	34
143	Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. , 1998, 212, 533.		1
144	Interactions between Bmpâ€4 and Msxâ€1 act to restrict gene expression to odontogenic mesenchyme. Developmental Dynamics, 1998, 212, 533-539.	1.8	6

#	Article	IF	CITATIONS
145	Tail bud determination in the vertebrate embryo. Current Biology, 1995, 5, 807-813.	3.9	59