
Robert A Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1854574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	(+)-Catharanthine potentiates the GABAA receptor by binding to a transmembrane site at the \hat{l}^2 (+)/ \hat{l} ±(-) interface near the TM2-TM3 loop. Biochemical Pharmacology, 2022, 199, 114993.	2.0	2
2	Microglia depletion and alcohol: Transcriptome and behavioral profiles. Addiction Biology, 2021, 26, e12889.	1.4	24
3	Deletion of <i>Tlr3</i> reduces acute tolerance to alcohol and alcohol consumption in the intermittent access procedure in male mice. Addiction Biology, 2021, 26, e12932.	1.4	12
4	Modulation of α1β3γ2 GABA _A receptors expressed in <i>X. laevis</i> oocytes using a propofol photoswitch tethered to the transmembrane helix. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	4
5	Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sciences, 2021, 11, 1149.	1.1	7
6	Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology, 2020, 178, 108220.	2.0	5
7	Microglia Control Escalation of Drinking in Alcohol-Dependent Mice: Genomic and Synaptic Drivers. Biological Psychiatry, 2020, 88, 910-921.	0.7	68
8	Inbred Substrain Differences Influence Neuroimmune Response and Drinking Behavior. Alcoholism: Clinical and Experimental Research, 2020, 44, 1760-1768.	1.4	10
9	Dissecting Brain Networks Underlying Alcohol Binge Drinking Using a Systems Genomics Approach. Molecular Neurobiology, 2019, 56, 2791-2810.	1.9	28
10	Glial gene networks associated with alcohol dependence. Scientific Reports, 2019, 9, 10949.	1.6	44
11	Cannabis and Alcohol: From Basic Science to Public Policy. Alcoholism: Clinical and Experimental Research, 2019, 43, 1829-1833.	1.4	3
12	<i>Scn4b</i> regulates the hypnotic effects of ethanol and other sedative drugs. Genes, Brain and Behavior, 2019, 18, e12562.	1.1	3
13	A Pathway-Based Genomic Approach to Identify Medications: Application to Alcohol Use Disorder. Brain Sciences, 2019, 9, 381.	1.1	6
14	Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice. Brain, Behavior, and Immunity, 2019, 77, 55-65.	2.0	43
15	Ethanol and a rapid-acting antidepressant produce overlapping changes in exon expression in the synaptic transcriptome. Neuropharmacology, 2019, 146, 289-299.	2.0	9
16	Toll-like receptor 3 dynamics in female C57BL/6J mice: Regulation of alcohol intake. Brain, Behavior, and Immunity, 2019, 77, 66-76.	2.0	29
17	Silencing synaptic MicroRNAâ€411 reduces voluntary alcohol consumption in mice. Addiction Biology, 2019, 24, 604-616.	1.4	17
18	Apremilast Alters Behavioral Responses to Ethanol in Mice: II. Increased Sedation, Intoxication, and Reduced Acute Functional Tolerance. Alcoholism: Clinical and Experimental Research, 2018, 42, 939-951.	1.4	19

#	Article	IF	CITATIONS
19	Apremilast Alters Behavioral Responses to Ethanol in Mice: I. Reduced Consumption and Preference. Alcoholism: Clinical and Experimental Research, 2018, 42, 926-938.	1.4	19
20	From gene networks to drugs: systems pharmacology approaches for AUD. Psychopharmacology, 2018, 235, 1635-1662.	1.5	15
21	Genome-Wide Expression Profiles Drive Discovery of Novel Compounds that Reduce Binge Drinking in Mice. Neuropsychopharmacology, 2018, 43, 1257-1266.	2.8	39
22	Astrocyte-specific transcriptome responses to chronic ethanol consumption. Pharmacogenomics Journal, 2018, 18, 578-589.	0.9	35
23	Chronic ethanol consumption: role of <scp>TLR3/TRIF</scp> â€dependent signaling. Addiction Biology, 2018, 23, 889-903.	1.4	57
24	Microglial-specific transcriptome changes following chronic alcohol consumption. Neuropharmacology, 2018, 128, 416-424.	2.0	37
25	Persistence of Drug Memories: Melting Transcriptomes. Biological Psychiatry, 2018, 84, 860-861.	0.7	0
26	Peroxisome Proliferator Activated Receptor Agonists Modulate Transposable Element Expression in Brain and Liver. Frontiers in Molecular Neuroscience, 2018, 11, 331.	1.4	8
27	Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS ONE, 2018, 13, e0190841.	1.1	32
28	Ethanol Consumption in Mice Lacking CD14, TLR2, TLR4, or MyD88. Alcoholism: Clinical and Experimental Research, 2017, 41, 516-530.	1.4	57
29	Sedative and Motor Incoordination Effects of Ethanol in Mice Lacking CD14, TLR2, TLR4, or MyD88. Alcoholism: Clinical and Experimental Research, 2017, 41, 531-540.	1.4	29
30	The Neuroimmune Basis of Excessive Alcohol Consumption. Neuropsychopharmacology, 2017, 42, 376-376.	2.8	35
31	Mutation of the inhibitory ethanol site in GABA A 🖥 receptors promotes tolerance to ethanol-induced motor incoordination. Neuropharmacology, 2017, 123, 201-209.	2.0	34
32	The future is now: A 2020 view of alcoholism research. Neuropharmacology, 2017, 122, 1-2.	2.0	9
33	Mechanistic insights into epigenetic modulation of ethanol consumption. Alcohol, 2017, 60, 95-101.	0.8	27
34	Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents. Journal of Neuroscience, 2017, 37, 1139-1155.	1.7	72
35	Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science, 2017, 357, 1261-1266.	6.0	65
36	Novel Molecule Exhibiting Selective Affinity for GABAA Receptor Subtypes. Scientific Reports, 2017, 7, 6230.	1.6	8

#	Article	IF	CITATIONS
37	Glycine receptor α3 and α2 subunits mediate tonic and exogenous agonist-induced currents in forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7179-E7186.	3.3	42
38	DNA modifications in models of alcohol use disorders. Alcohol, 2017, 60, 19-30.	0.8	36
39	CNS cell-type localization and LPS response of TLR signaling pathways. F1000Research, 2017, 6, 1144.	0.8	34
40	Inhibition of IKKÎ ² Reduces Ethanol Consumption in C57BL/6J Mice. ENeuro, 2016, 3, ENEURO.0256-16.2016.	0.9	31
41	Inter- and Intra-Subunit Butanol/Isoflurane Sites of Action in the Human Glycine Receptor. Frontiers in Molecular Neuroscience, 2016, 9, 45.	1.4	7
42	PPAR Agonists: I. Role of Receptor Subunits in Alcohol Consumption in Male and Female Mice. Alcoholism: Clinical and Experimental Research, 2016, 40, 553-562.	1.4	23
43	The neuroimmune transcriptome and alcohol dependence: potential for targeted therapies. Pharmacogenomics, 2016, 17, 2081-2096.	0.6	29
44	Genes and Alcohol Consumption. International Review of Neurobiology, 2016, 126, 293-355.	0.9	56
45	Localization of PPAR isotypes in the adult mouse and human brain. Scientific Reports, 2016, 6, 27618.	1.6	188
46	FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties. Nature Communications, 2016, 7, 12867.	5.8	48
47	PPAR Agonists: II. Fenofibrate and Tesaglitazar Alter Behaviors Related to Voluntary Alcohol Consumption. Alcoholism: Clinical and Experimental Research, 2016, 40, 563-571.	1.4	28
48	Identification of an Inhibitory Alcohol Binding Site in GABA _A ÏI Receptors. ACS Chemical Neuroscience, 2016, 7, 100-108.	1.7	12
49	Synaptic microRNAs Coordinately Regulate Synaptic mRNAs: Perturbation by Chronic Alcohol Consumption. Neuropsychopharmacology, 2016, 41, 538-548.	2.8	20
50	Ethanol Modulation is Quantitatively Determined by the Transmembrane Domain of Human <i>α</i> 1 Glycine Receptors. Alcoholism: Clinical and Experimental Research, 2015, 39, 962-968.	1.4	4
51	Epigenetic modulation of brain gene networks for cocaine and alcohol abuse. Frontiers in Neuroscience, 2015, 9, 176.	1.4	69
52	Chronic Ethanol Exposure Produces Time- and Brain Region-Dependent Changes in Gene Coexpression Networks. PLoS ONE, 2015, 10, e0121522.	1.1	92
53	Peroxisome Proliferatorâ€Activated Receptors <i>α</i> and <i>γ</i> are Linked with Alcohol Consumption in Mice and Withdrawal and Dependence in Humans. Alcoholism: Clinical and Experimental Research, 2015, 39, 136-145.	1.4	85
54	Glycine Receptors Containing <i>α</i> 2 or <i>α</i> 3 Subunits Regulate Specific Ethanol-Mediated Behaviors. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 181-191.	1.3	33

#	Article	IF	CITATIONS
55	Behavioral and Genetic Evidence for GIRK Channels in the CNS. International Review of Neurobiology, 2015, 123, 279-313.	0.9	49
56	Role of interleukin-1 receptor signaling in the behavioral effects ofÂethanol and benzodiazepines. Neuropharmacology, 2015, 95, 309-320.	2.0	25
57	Applying the new genomics to alcohol dependence. Alcohol, 2015, 49, 825-836.	0.8	15
58	Mechanisms of Action of Different Drugs of Abuse. , 2014, , .		0
59	Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Frontiers in Neuroscience, 2014, 8, 129.	1.4	59
60	Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation. Frontiers in Molecular Neuroscience, 2014, 7, 85.	1.4	31
61	Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism. Neuropsychopharmacology, 2014, 39, 104-130.	2.8	40
62	Neuroimmune Pathways in Alcohol Consumption: Evidence from Behavioral and Genetic Studies in Rodents and Humans. International Review of Neurobiology, 2014, 118, 13-39.	0.9	88
63	GABA _A receptor transmembrane amino acids are critical for alcohol action: disulfide crossâ€linking and alkyl methanethiosulfonate labeling reveal relative location of binding sites. Journal of Neurochemistry, 2014, 128, 363-375.	2.1	22
64	Alcohol and the Brain. , 2014, , 349-358.		1
65	Neuroimmune Mechanisms of Alcohol and Drug Addiction. International Review of Neurobiology, 2014, 118, 1-12.	0.9	130
66	Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics. Pharmacological Reviews, 2014, 66, 396-412.	7.1	50
67	PPAR agonists regulate brain gene expression: Relationship to their effects on ethanol consumption. Neuropharmacology, 2014, 86, 397-407.	2.0	77
68	Molecular basis of alcoholism. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 125, 89-111.	1.0	52
69	Altered Gamma-Aminobutyric Acid Type B Receptor Subunit 1 Splicing In Alcoholics. Biological Psychiatry, 2014, 75, 765-773.	0.7	30
70	Innate immune factors modulate ethanol interaction with GABAergic transmission in mouse central amygdala. Brain, Behavior, and Immunity, 2014, 40, 191-202.	2.0	44
71	Alcohol dependence: molecular and behavioral evidence. Trends in Pharmacological Sciences, 2014, 35, 317-323.	4.0	84
72	GABAA Receptors Containing 🖥 Subunits Contribute to In Vivo Effects of Ethanol in Mice. PLoS ONE, 2014, 9, e85525.	1.1	50

#	Article	IF	CITATIONS
73	RNaseIII and T4 Polynucleotide Kinase sequence biases and solutions during RNA-seq library construction. Biology Direct, 2013, 8, 16.	1.9	15
74	Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation. Alcohol, 2013, 47, 595-599.	0.8	33
75	Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channels. Molecular Pharmacology, 2013, 84, 670-678.	1.0	19
76	Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics, 2013, 14, 725.	1.2	112
77	Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice. Pharmacology Biochemistry and Behavior, 2013, 104, 33-39.	1.3	13
78	Inhibition versus Potentiation of Ligand-Gated Ion Channels Can Be Altered by a Single Mutation that Moves Ligands between Intra- and Intersubunit Sites. Structure, 2013, 21, 1307-1316.	1.6	20
79	Neuroimmune signaling: a key component of alcohol abuse. Current Opinion in Neurobiology, 2013, 23, 513-520.	2.0	171
80	Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nature Communications, 2013, 4, 1697.	5.8	126
81	Zinc-Dependent Modulation of α2- and α3-Glycine Receptor Subunits by Ethanol. Alcoholism: Clinical and Experimental Research, 2013, 37, 2002-2010.	1.4	16
82	Mutation of a Zinc-Binding Residue in the Glycine Receptor α1 Subunit Changes Ethanol Sensitivity In Vitro and Alcohol Consumption In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 489-500.	1.3	24
83	Neuroimmune Genes and Alcohol Drinking Behavior. , 2013, , 425-440.		10
84	Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. PLoS ONE, 2013, 8, e59870.	1.1	96
85	Molecular Mechanism for the Dual Alcohol Modulation of Cys-loop Receptors. PLoS Computational Biology, 2012, 8, e1002710.	1.5	35
86	Behavioral Characterization of Knockin Mice with Mutations M287L and Q266I in the Glycine Receptor α1 Subunit. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 317-329.	1.3	35
87	The TM2 6′ Position of GABA _A Receptors Mediates Alcohol Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 445-456.	1.3	16
88	Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 304-316.	1.3	24
89	Mutations M287L and Q266I in the Glycine Receptor α1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice. Anesthesiology, 2012, 117, 765-771.	1.3	9
90	Gene Coexpression Networks in Human Brain Identify Epigenetic Modifications in Alcohol Dependence. Journal of Neuroscience, 2012, 32, 1884-1897.	1.7	368

#	Article	lF	CITATIONS
91	Dora B. Goldstein - In Memoriam. Alcoholism: Clinical and Experimental Research, 2012, 36, 2-3.	1.4	0
92	Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addiction Biology, 2012, 17, 108-120.	1.4	212
93	Alcohol Dependence and Genes Encoding $\hat{I}\pm 2$ and \hat{I}^31 GABAA Receptor Subunits: Insights from Humans and Mice. , 2012, 34, 345-53.		5
94	Using genetically engineered animal models in the postgenomic era to understand gene function in alcoholism. , 2012, 34, 282-91.		2
95	Structural basis for alcohol modulation of a pentameric ligand-gated ion channel. Proceedings of the United States of America, 2011, 108, 12149-12154.	3.3	102
96	Small K Channels: Big Targets for Treating Alcoholism?. Biological Psychiatry, 2011, 69, 614-615.	0.7	1
97	How Should Addiction-Related Research at the National Institutes of Health be Reorganized?. Frontiers in Psychiatry, 2011, 2, 2.	1.3	2
98	Structure-activity relationships among hallucinogenic tryptamine derivatives evaluated by schedule-controlled behaviour. Journal of Pharmacy and Pharmacology, 2011, 33, 320-322.	1.2	4
99	Molecular Profiles of Drinking Alcohol to Intoxication in C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 2011, 35, 659-670.	1.4	106
100	Should the Reorganization of Addiction-Related Research Across All the National Institutes of Health Be Structural?-The Devil Is Truly in the Details. Alcoholism: Clinical and Experimental Research, 2011, 35, 572-580.	1.4	7
101	Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	41
102	Up-Regulation of MicroRNAs in Brain of Human Alcoholics. Alcoholism: Clinical and Experimental Research, 2011, 35, 1928-1937.	1.4	174
103	Preclinical studies of alcohol binge drinking. Annals of the New York Academy of Sciences, 2011, 1216, 24-40.	1.8	172
104	Dynaminâ€1 coâ€associates with native mouse brain BK _{Ca} channels: Proteomics analysis of synaptic protein complexes. FEBS Letters, 2010, 584, 845-851.	1.3	33
105	A Transmembrane Amino Acid in the GABA _A Receptor β ₂ Subunit Critical for the Actions of Alcohols and Anesthetics. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 600-606.	1.3	25
106	Amygdala Transcriptome and Cellular Mechanisms Underlying Stress-Enhanced Fear Learning in a Rat Model of Posttraumatic Stress Disorder. Neuropsychopharmacology, 2010, 35, 1402-1411.	2.8	112
107	Zinc enhances ethanol modulation of the $\hat{I}\pm 1$ glycine receptor. Neuropharmacology, 2010, 58, 676-681.	2.0	26
108	Intron 4 Containing Novel GABAB1 Isoforms Impair GABAB Receptor Function. PLoS ONE, 2010, 5, e14044.	1.1	21

#	Article	IF	CITATIONS
109	Alcohol's effects on brain and behavior. Alcohol Research, 2010, 33, 127-43.	1.0	63
110	Gene expression profiling in blood: new diagnostics in alcoholism and addiction?. Neuropsychopharmacology, 2009, 34, 250-251.	2.8	10
111	Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain. Proteomics - Clinical Applications, 2009, 3, 730-742.	0.8	27
112	Effects of Acamprosate on Neuronal Receptors and Ion Channels Expressed in <i>Xenopus</i> Oocytes. Alcoholism: Clinical and Experimental Research, 2008, 32, 188-196.	1.4	30
113	Crossâ€linking of sites involved with alcohol action between transmembrane segments 1 and 3 of the glycine receptor following activation. Journal of Neurochemistry, 2008, 104, 1649-1662.	2.1	26
114	GABAA receptors and alcohol. Pharmacology Biochemistry and Behavior, 2008, 90, 90-94.	1.3	163
115	Ethanol's Molecular Targets. Science Signaling, 2008, 1, re7.	1.6	209
116	<i>n</i> -Alcohols Inhibit Voltage-Gated Na ⁺ Channels Expressed in <i>Xenopus</i> Oocytes. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 270-277.	1.3	44
117	General Anesthetics Have Additive Actions on Three Ligand Gated Ion Channels. Anesthesia and Analgesia, 2008, 107, 486-493.	1.1	24
118	Metabotropic glutamate receptor 5 (mGluR5) regulation of ethanol sedation, dependence and consumption: relationship to acamprosate actions. International Journal of Neuropsychopharmacology, 2008, 11, 775-93.	1.0	108
119	The Effects of Volatile Aromatic Anesthetics on Voltage-Gated Na+ Channels Expressed in Xenopus Oocytes. Anesthesia and Analgesia, 2008, 107, 1579-1586.	1.1	18
120	Effect of Isoflurane and Other Potent Inhaled Anesthetics on Minimum Alveolar Concentration, Learning, and the Righting Reflex in Mice Engineered to Express α1γ-Aminobutyric Acid Type A Receptors Unresponsive to Isoflurane. Anesthesiology, 2007, 106, 107-113.	1.3	70
121	Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System. PLoS ONE, 2007, 2, e930.	1.1	75
122	Studies of ethanol actions on recombinant δ-containing γ-aminobutyric acid type A receptors yield contradictory results. Alcohol, 2007, 41, 155-162.	0.8	62
123	Altered Gene Expression Profiles in the Frontal Cortex of Cirrhotic Alcoholics. Alcoholism: Clinical and Experimental Research, 2007, 31, 1460-1466.	1.4	60
124	Role of Endocannabinoids in Alcohol Consumption and Intoxication: Studies of Mice Lacking Fatty Acid Amide Hydrolase. Neuropsychopharmacology, 2007, 32, 1570-1582.	2.8	126
125	Accessibility to residues in transmembrane segment four of the glycine receptor. Neuropharmacology, 2006, 50, 174-181.	2.0	28
126	The Minimum Alveolar Anesthetic Concentration of 2-, 3-, and 4-Alcohols and Ketones in Rats: Relevance to Anesthetic Mechanisms. Anesthesia and Analgesia, 2006, 102, 1419-1426.	1.1	7

#	Article	IF	CITATIONS
127	Alcohol-related genes: contributions from studies with genetically engineered mice. Addiction Biology, 2006, 11, 195-269.	1.4	230
128	Sites in TM2 and 3 are critical for alcohol-induced conformational changes in GABAA receptors. Journal of Neurochemistry, 2006, 96, 885-892.	2.1	21
129	Reduced alcohol consumption in mice lacking preprodynorphin. Alcohol, 2006, 40, 73-86.	0.8	79
130	δ-Subunit containing GABAA receptor knockout mice are less sensitive to the actions of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol. European Journal of Pharmacology, 2006, 541, 158-162.	1.7	44
131	Knockin Mice with Ethanol-Insensitive α1-Containing γ-Aminobutyric Acid Type A Receptors Display Selective Alterations in Behavioral Responses to Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 219-227.	1.3	44
132	Patterns of Gene Expression in the Frontal Cortex Discriminate Alcoholic from Nonalcoholic Individuals. Neuropsychopharmacology, 2006, 31, 1574-1582.	2.8	253
133	Effects of Anesthetics on Mutant N-Methyl-d-Aspartate Receptors Expressed in Xenopus Oocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 434-443.	1.3	89
134	Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6368-6373.	3.3	349
135	Î ³ -Aminobutyric Acid Type A Receptors and Alcoholism. Archives of General Psychiatry, 2006, 63, 957.	13.8	181
136	From Gene to Behavior and Back Again: New Perspectives on GABAA Receptor Subunit Selectivity of Alcohol Actions1. Advances in Pharmacology, 2006, 54, 171-203.	1.2	30
137	The δ Subunit of γ-Aminobutyric Acid Type A Receptors Does Not Confer Sensitivity to Low Concentrations of Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1360-1368.	1.3	158
138	Transcriptional Signatures of Cellular Plasticity in Mice Lacking the Â1 Subunit of GABAA Receptors. Journal of Neuroscience, 2006, 26, 5673-5683.	1.7	54
139	The Effects of Anesthetics and Ethanol on ??2 Adrenoceptor Subtypes Expressed with G Protein-Coupled Inwardly Rectifying Potassium Channels in Xenopus Oocytes. Anesthesia and Analgesia, 2005, 101, 1381-1388.	1.1	8
140	β3-Containing Gamma-Aminobutyric AcidA Receptors Are Not Major Targets for the Amnesic and Immobilizing Actions of Isoflurane. Anesthesia and Analgesia, 2005, 101, 412-418.	1.1	50
141	Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nature Neuroscience, 2005, 8, 1465-1470.	7.1	342
142	Hybrid C57BL/6J ?? FVB/NJ Mice Drink More Alcohol than Do C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 2005, 29, 1949-1958.	1.4	44
143	Functional and Structural Analysis of the GABAA Receptor α1 Subunit during Channel Gating and Alcohol Modulation. Journal of Biological Chemistry, 2005, 280, 308-316.	1.6	39
144	Sites of Alcohol and Volatile Anesthetic Action on Glycine Receptors. International Review of Neurobiology, 2005, 65, 53-87.	0.9	36

#	Article	IF	CITATIONS
145	Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behavioural Brain Research, 2005, 165, 110-125.	1.2	132
146	Deletion of the fyn-Kinase Gene Alters Sensitivity to GABAergic Drugs: Dependence on β2/β3 GABAA Receptor Subunits. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1154-1159.	1.3	27
147	Channel Gating of the Glycine Receptor Changes Accessibility to Residues Implicated in Receptor Potentiation by Alcohols and Anesthetics. Journal of Biological Chemistry, 2004, 279, 33919-33927.	1.6	52
148	Effects of Alcohols and Anesthetics on Recombinant Voltage-Gated Na+ Channels. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 987-994.	1.3	67
149	Cross-linking of glycine receptor transmembrane segments two and three alters coupling of ligand binding with channel opening. Journal of Neurochemistry, 2004, 90, 962-969.	2.1	29
150	Are Sobriety and Consciousness Determined by Water in Protein Cavities?. Alcoholism: Clinical and Experimental Research, 2004, 28, 1-3.	1.4	19
151	Blockade of the Leptin-Sensitive Pathway Markedly Reduces Alcohol Consumption in Mice. Alcoholism: Clinical and Experimental Research, 2004, 28, 1683-1692.	1.4	27
152	Î ³ -Aminobutyric acid A receptor subunit mutant mice: new perspectives on alcohol actions. Biochemical Pharmacology, 2004, 68, 1581-1602.	2.0	150
153	Gene expression profiling of individual cases reveals consistent transcriptional changes in alcoholic human brain. Journal of Neurochemistry, 2004, 90, 1050-1058.	2.1	120
154	The Application of Proteomics to the Human Alcoholic Brain. Annals of the New York Academy of Sciences, 2004, 1025, 14-26.	1.8	56
155	Mice lacking metabotropic glutamate receptor 4 do not show the motor stimulatory effect of ethanol. Alcohol, 2004, 34, 251-259.	0.8	45
156	Over-expression of the fyn-kinase gene reduces hypnotic sensitivity to ethanol in mice. Neuroscience Letters, 2004, 372, 6-11.	1.0	19
157	Gamma-Aminobutyric AcidA Receptors Do Not Mediate the Immobility Produced by Isoflurane. Anesthesia and Analgesia, 2004, 99, 85-90.	1.1	47
158	Mutation in neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes blocks ethanol action. Addiction Biology, 2003, 8, 313-318.	1.4	10
159	Deletion of the Fyn-Kinase Gene Alters Behavioral Sensitivity to Ethanol. Alcoholism: Clinical and Experimental Research, 2003, 27, 1033-1040.	1.4	43
160	Methods for the identification of differentially expressed genes in human post-mortem brain. Methods, 2003, 31, 301-305.	1.9	7
161	Deletion of the α1 or β2 Subunit of GABAAReceptors Reduces Actions of Alcohol and Other Drugs. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 30-36.	1.3	110
162	Inhaled Anesthetics and Immobility: Mechanisms, Mysteries, and Minimum Alveolar Anesthetic Concentration. Anesthesia and Analgesia, 2003, 97, 718-740.	1.1	265

#	Article	IF	CITATIONS
163	Glycine Receptors Mediate Part of the Immobility Produced by Inhaled Anesthetics. Anesthesia and Analgesia, 2003, 96, 97-101.	1.1	45
164	Glycine Receptors Mediate Part of the Immobility Produced by Inhaled Anesthetics. Anesthesia and Analgesia, 2003, 96, 97-101.	1.1	63
165	Sites of Excitatory and Inhibitory Actions of Alcohols on Neuronal α2β4 Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 42-52.	1.3	46
166	Glycine Receptor Knock-In Mice and Hyperekplexia-Like Phenotypes: Comparisons with the Null Mutant. Journal of Neuroscience, 2003, 23, 8051-8059.	1.7	49
167	Sites of Excitatory and Inhibitory Actions of Alcohols on Neuronal Â2Â4 Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 42-52.	1.3	53
168	Ethanol-sensitive Sites on the Human Dopamine Transporter. Journal of Biological Chemistry, 2002, 277, 30724-30729.	1.6	36
169	Nonhalogenated Alkanes Cyclopropane and Butane Affect Neurotransmitter-gated Ion Channel and G-protein–coupled Receptors. Anesthesiology, 2002, 97, 1512-1520.	1.3	23
170	Anesthetic-Induced Immobility: Neuronal Nicotinic Acetylcholine Receptors Are No Longer in the Picture. Anesthesia and Analgesia, 2002, 95, 509-511.	1.1	3
171	The Anesthetic Mechanism of Urethane: The Effects on Neurotransmitter-Gated Ion Channels. Anesthesia and Analgesia, 2002, 94, 313-318.	1.1	291
172	The Anesthetic Mechanism of Urethane: The Effects on Neurotransmitter-Gated Ion Channels. Anesthesia and Analgesia, 2002, 94, 313-318.	1.1	388
173	Anesthetic-Induced Immobility: Neuronal Nicotinic Acetylcholine Receptors Are No Longer in the Picture. Anesthesia and Analgesia, 2002, 95, 509-511.	1.1	3
174	Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. Journal of Neurochemistry, 2002, 81, 802-813.	2.1	292
175	Microtubule Depolymerization Inhibits Ethanol-Induced Enhancement of GABAA Responses in Stably Transfected Cells. Journal of Neurochemistry, 2002, 66, 1318-1321.	2.1	21
176	Two-shot cocktail: Adenosine, dopamine and a twist of βγ. Nature Medicine, 2002, 8, 777-779.	15.2	1
177	Acetylcholine and Alcohol Sensitivity of Neuronal Nicotinic Acetylcholine Receptors: Mutations in Transmembrane Domains. Alcoholism: Clinical and Experimental Research, 2002, 26, 1764-1772.	1.4	21
178	Acetylcholine and alcohol sensitivity of neuronal nicotinic acetylcholine receptors: mutations in transmembrane domains. Alcoholism: Clinical and Experimental Research, 2002, 26, 1764-72.	1.4	12
179	ANESTHETICS ANDIONCHANNELS: Molecular Models and Sites of Action. Annual Review of Pharmacology and Toxicology, 2001, 41, 23-51.	4.2	231
180	GIRK2 deficient mice. Physiology and Behavior, 2001, 74, 109-117.	1.0	69

#	Article	IF	CITATIONS
181	Relevant Concentrations of Inhaled Anesthetics for In Vitro Studies of Anesthetic Mechanisms. Anesthesiology, 2001, 94, 915-921.	1.3	49
182	Luciferase as a Model for the Site of Inhaled Anesthetic Action. Anesthesia and Analgesia, 2001, 93, 1246-1252.	1.1	6
183	Application of DNA microarrays to study human alcoholism. Journal of Biomedical Science, 2001, 8, 28-36.	2.6	57
184	Alcohol Actions on GABAA Receptors: From Protein Structure to Mouse Behavior. Alcoholism: Clinical and Experimental Research, 2001, 25, 76S-81S.	1.4	39
185	Alcohol Actions on GABAA Receptors: From Protein Structure to Mouse Behavior. Alcoholism: Clinical and Experimental Research, 2001, 25, 76S-81S.	1.4	21
186	The Anesthetic Potencies of Alkanethiols for Rats: Relevance to Theories of Narcosis. Anesthesia and Analgesia, 2000, 91, 1294-1299.	1.1	3
187	The Anesthetic Potency of Propanol and Butanol Versus Propanethiol and Butanethiol in α1 Wild Type and α1(S267Q) Glycine Receptors. Anesthesia and Analgesia, 2000, 91, 1289-1293.	1.1	8
188	Rescue of γ2 subunit-deficient mice by transgenic overexpression of the GABAAreceptor γ2S or γ2L subunit isoforms. European Journal of Neuroscience, 2000, 12, 2639-2643.	1.2	36
189	Behavioural changes produced by transgenic overexpression of γ2L and γ2S subunits of the GABAAreceptor. European Journal of Neuroscience, 2000, 12, 2634-2638.	1.2	39
190	Tryptophan scanning mutagenesis in TM2 of the GABAA receptor α subunit: effects on channel gating and regulation by ethanol. British Journal of Pharmacology, 2000, 131, 296-302.	2.7	66
191	Gene Expression in Human Alcoholism: Microarray Analysis of Frontal Cortex. Alcoholism: Clinical and Experimental Research, 2000, 24, 1873-1882.	1.4	366
192	The Anesthetic Potency of Propanol and Butanol Versus Propanethiol and Butanethiol in α1 Wild Type and α1(S267Q) Glycine Receptors. Anesthesia and Analgesia, 2000, 91, 1289-1293.	1.1	7
193	The Anesthetic Potencies of Alkanethiols for Rats: Relevance to Theories of Narcosis. Anesthesia and Analgesia, 2000, 91, 1294-1299.	1.1	16
194	A Transmembrane Site Determines Sensitivity of Neuronal Nicotinic Acetylcholine Receptors to General Anesthetics. Journal of Biological Chemistry, 2000, 275, 40879-40886.	1.6	41
195	Gene Expression in Human Alcoholism: Microarray Analysis of Frontal Cortex. , 2000, 24, 1873.		7
196	Volatile Anesthetic Effects at Excitatory Amino Acid Receptors. Handbooks of Pharmacology and Toxicology, 2000, , 231-243.	0.1	0
197	Actions of Fluorinated Alkanols on GABAA Receptors. Anesthesia and Analgesia, 1999, 88, 877-883.	1.1	17
198	Minimum Alveolar Anesthetic Concentration of Fluorinated Alkanols in Rats. Anesthesia and Analgesia, 1999, 88, 867-876.	1.1	47

#	Article	IF	CITATIONS
199	Minimum Alveolar Anesthetic Concentration of Fluorinated Alkanols in Rats. Anesthesia and Analgesia, 1999, 88, 867-876.	1.1	37
200	Amino Acid Volume and Hydropathy of a Transmembrane Site Determine Glycine and Anesthetic Sensitivity of Glycine Receptors. Journal of Biological Chemistry, 1999, 274, 23006-23012.	1.6	54
201	G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nature Neuroscience, 1999, 2, 1084-1090.	7.1	217
202	Ethanol Actions on Multiple Ion Channels: Which Are Important?. Alcoholism: Clinical and Experimental Research, 1999, 23, 1563-1570.	1.4	155
203	Subunit mutations affect ethanol actions on GABAA receptors expressed in Xenopus oocytes. British Journal of Pharmacology, 1999, 127, 377-382.	2.7	61
204	Actions of Fluorinated Alkanols on GABAA Receptors. Anesthesia and Analgesia, 1999, 88, 877-883.	1.1	27
205	Effects of Ethanol on Recombinant Glycine Receptors Expressed in Mammalian Cell Lines. Alcoholism: Clinical and Experimental Research, 1998, 22, 1132-1136.	1.4	36
206	Enhancement of glycine receptor function by ethanol: role of phosphorylation. British Journal of Pharmacology, 1998, 125, 263-270.	2.7	39
207	Sites of Volatile Anesthetic Action on Kainate (Clutamate Receptor 6) Receptors. Journal of Biological Chemistry, 1998, 273, 8248-8255.	1.6	53
208	Enhancement of Glycine Receptor Function by Ethanol Is Inversely Correlated with Molecular Volume at Position α267. Journal of Biological Chemistry, 1998, 273, 3314-3319.	1.6	123
209	Effects of Ethanol and Anesthetics on Type 1 and 5 Metabotropic Glutamate Receptors Expressed in <i>Xenopus laevis</i> Oocytes. Molecular Pharmacology, 1998, 53, 148-156.	1.0	112
210	Acute Effects of Ethanol on Pharmacologically Isolated Kainate Receptors in Cerebellar Granule Neurons: Comparison with NMDA and AMPA Receptors. Journal of Neurochemistry, 1998, 71, 1777-1780.	2.1	38
211	Hypothesis. Anesthesia and Analgesia, 1997, 84, 915-918.	1.1	60
212	Glycine receptors from long-sleep and short-sleep mice: genetic differences in drug sensitivity. Molecular Brain Research, 1997, 45, 169-172.	2.5	6
213	Ethanol, Flunitrazepam, and Pentobarbital Modulation of GABAAReceptors Expressed in Mammalian Cells andXenopusOocytes. Alcoholism: Clinical and Experimental Research, 1997, 21, 444-451.	1.4	72
214	Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature, 1997, 389, 385-389.	13.7	1,201
215	Enhancement of homomeric glycine receptor function by longchain alcohols and anaesthetics. British Journal of Pharmacology, 1996, 119, 1331-1336.	2.7	188
216	Robotic Automation of XenopusOocyte Bath Perfusion. BioTechniques, 1996, 20, 802-804.	0.8	2

#	Article	IF	CITATIONS
217	Regulation of GABAA Receptor Structure and Function by Chronic Drug Treatments In Vivo and with Stably Transfected Cells. The Japanese Journal of Pharmacology, 1996, 70, 1-14.	1.2	34
218	Transfected cells for study of alcohol actions on GABAA receptors. Addiction Biology, 1996, 1, 157-163.	1.4	5
219	Measurement of glycine receptor function by radioactive chloride uptake. Journal of Neuroscience Methods, 1996, 68, 253-257.	1.3	6
220	How Much Alcohol Should I Use in My Experiments?. Alcoholism: Clinical and Experimental Research, 1996, 20, 1-2.	1.4	55
221	The Cytoskeleton and Neurotransmitter Receptors. International Review of Neurobiology, 1996, 39, 113-143.	0.9	42
222	Ethanol Increases GABAA Responses in Cells Stably Transfected with Receptor Subunits. Alcoholism: Clinical and Experimental Research, 1995, 19, 226-232.	1.4	108
223	GABAA Receptor Function and Binding in Stably Transfected Cells: Chronic Ethanol Treatment. Alcoholism: Clinical and Experimental Research, 1995, 19, 1338-1344.	1.4	19
224	Actions of anesthetics on ligandâ€gated ion channels: role of receptor subunit composition. FASEB Journal, 1995, 9, 1454-1462.	0.2	194
225	Anaesthetic concentrations of alcohols potentiate GABAA receptor-mediated currents: lack of subunit specificity. European Journal of Pharmacology, 1994, 268, 209-214.	2.7	81
226	Effects of 5-HT3 receptor antagonists on binding and function of mouse and human GABAA receptors. European Journal of Pharmacology, 1994, 268, 237-246.	2.7	42
227	Effects of Ethanol on Structural Parameters of Rat Brain Membranes: Relationship to Genetic Differences in Ethanol Sensitivity. Alcoholism: Clinical and Experimental Research, 1994, 18, 53-59.	1.4	23
228	Differential effects of GABAergic ligands in mouse and rat hippocampal neurons. Brain Research, 1994, 647, 97-105.	1.1	34
229	Benzodiazepine Treatment Causes Uncoupling of Recombinant GABA _A Receptors Expressed in Stably Transfected Cells. Journal of Neurochemistry, 1994, 63, 2349-2352.	2.1	46
230	Î²â€Łumicolchicine Interacts with the Benzodiazepine Binding Site to Potentiate GABA _A Receptorâ€Mediated Currents. Journal of Neurochemistry, 1994, 62, 1790-1794.	2.1	9
231	Molecular Determinants of General Anesthetic Action: Role of GABAAReceptor Structure. Journal of Neurochemistry, 1993, 60, 1548-1553.	2.1	48
232	Activation of Calcium-Phospholipid-Dependent Protein Kinase Enhances Benzodiazepine and Barbiturate Potentiation of the GABAAReceptor. Journal of Neurochemistry, 1993, 60, 1972-1975.	2.1	53
233	Enflurane inhibits NMDA, AMPA, and kainateâ€induced currents in <i>Xenopus</i> oocytes expressing mouse and human brain mRNA. FASEB Journal, 1993, 7, 479-485.	0.2	47
234	Neuronal Ion Channels. Recent Developments in Alcoholism: an Official Publication of the American Medical Society on Alcoholism, and the Research Society on Alcoholism, and the National Council on Alcoholism, 1993, , 169-186.	0.4	21

#	Article	IF	CITATIONS
235	Possible Substrates of Ethanol Reinforcement: GABA and Dopamine. Annals of the New York Academy of Sciences, 1992, 654, 61-69.	1.8	39
236	Mammalian Genetics in the Study of Alcohol and Anesthetic Actions. Annals of the New York Academy of Sciences, 1991, 625, 508-514.	1.8	7
237	Cerebellar GABA B receptors modulate function of GABA A receptors. FASEB Journal, 1991, 5, 2466-2472.	0.2	43
238	Neuroadaptive Responses to Chronic Ethanol. Alcoholism: Clinical and Experimental Research, 1991, 15, 460-470.	1.4	63
239	Effect of Chronic Ethanol Treatment and Selective Breeding for Sensitivity to Ethanol on Calcium Release Induced by Inositol Trisphosphate for Ethanol from Brain and Liver Microsomes. Alcoholism: Clinical and Experimental Research, 1991, 15, 224-228.	1.4	5
240	Ethanol-Induced Changes in Chloride Flux are Mediated by Both GABAA and GABAB Receptors. Alcoholism: Clinical and Experimental Research, 1991, 15, 233-237.	1.4	40
241	A transient osmotic permeabilization method for the introduction of impermeant molecules into functional brain membrane vesicles. Journal of Neuroscience Methods, 1991, 40, 233-241.	1.3	4
242	Cyclic AMP-Dependent Protein Kinase Decreases ?-Aminobutyric AcidAReceptor-Mediated36Q1?Uptake by Brain Microsacs. Journal of Neurochemistry, 1991, 57, 722-725.	2.1	52
243	Modulation of ?-Aminobutyric AcidAReceptor-Operated Chloride Channels by Benzodiazepine Inverse Agonists Is Related to Genetic Differences in Ethanol Withdrawal Seizure Severity. Journal of Neurochemistry, 1991, 57, 2100-2105.	2.1	26
244	Chronic Ethanol Treatment Alters Brain Levels of ?-Aminobutyric AcidAReceptor Subunit mRNAs: Relationship to Genetic Differences in Ethanol Withdrawal Seizure Severity. Journal of Neurochemistry, 1991, 57, 1452-1455.	2.1	112
245	Neurochemical Studies of Genetic Differences in Alcohol Action. , 1991, , 105-152.		26
246	Alcohol sensitivity. Nature, 1990, 348, 589-589.	13.7	13
247	Alcohol intoxication: ion channels and genetics. FASEB Journal, 1989, 3, 1689-1695.	0.2	117
248	Diazepam sensitizes mice to FG 7142 and reduces muscimol-stimulated 36Clâ^' flux. Pharmacology Biochemistry and Behavior, 1989, 33, 465-468.	1.3	13
249	Fluidization of brain membranes by A2C does not produce anesthesia and does not augment muscimol-stimulated 36Clâ~' influx. European Journal of Pharmacology, 1989, 160, 359-367.	1.7	19
250	Chemical kindling decreases GABA-activated chloride channels of mouse brain. European Journal of Pharmacology, 1989, 160, 101-106.	1.7	33
251	Genetic differences in coupling of benzodiazepine receptors to chloride channels. Brain Research, 1989, 490, 26-32.	1.1	41
252	Sensitivity to Ethanol Hypnosis and Modulation of Chloride Channels Does Not Cosegregate with Pentobarbital Sensitivity in HS Mice. Alcoholism: Clinical and Experimental Research, 1989, 13, 428-434.	1.4	12

#	Article	IF	CITATIONS
253	Effects of platelet activating factor and related lipids on phase transition of dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1988, 941, 76-82.	1.4	17
254	Effects of platelet activating factor on calcium-lipid interactions and lateral phase separations in phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1988, 943, 211-219.	1.4	13
255	Genetic selection for benzodiazepine ataxia produces functional changes in the Î ³ -aminobutyric acid receptor chloride channel complex. Brain Research, 1988, 452, 118-126.	1.1	40
256	Effects of ethanol and calcium on lipid order of membranes from mice selected for genetic differences in ethanol intoxication. Alcohol, 1988, 5, 251-257.	0.8	23
257	Effect of Chronic Ethanol Treatment and Selective Breeding for Hypnotic Sensitivity to Ethanol on Intracellular Ionized Calcium Concentrations in Synaptosomes. Alcoholism: Clinical and Experimental Research, 1988, 12, 179-183.	1.4	22
258	Effects of Ethanol on Membrane Order: Fluorescence Studies. Annals of the New York Academy of Sciences, 1987, 492, 125-135.	1.8	51
259	What should hepatologists know about membrane fluidity?. Hepatology, 1987, 7, 177-180.	3.6	17
260	Involvement of Neuronal Chloride Channels in Ethanol Intoxication, Tolerance, and Dependence. Recent Developments in Alcoholism: an Official Publication of the American Medical Society on Alcoholism, and the Research Society on Alcoholism, and the National Council on Alcoholism, 1987, 5, 313-325.	0.4	58
261	Ionizing Radiation Alters the Properties of Sodium Channels in Rat Brain Synaptosomes. Journal of Neurochemistry, 1986, 47, 489-495.	2.1	14
262	Membrane Disordering by Anesthetic Drugs: Relationship to Synaptosomal Sodium and Calcium Fluxes. Journal of Neurochemistry, 1985, 44, 1274-1281.	2.1	84
263	Alcohol and the calcium-dependent potassium transport of human erythrocytes. Alcohol, 1985, 2, 149-152.	0.8	4
264	Effects of excitatory amino acids on calcium transport by brain membranes. Brain Research, 1985, 337, 167-170.	1.1	9
265	Chronic ethanol increases liver plasma membrane fluidity. Biochemistry, 1985, 24, 3114-3120.	1.2	71
266	Effects of anesthetic and anticonvulsant drugs on calcium-dependent efflux of potassium from human erythrocytes. European Journal of Pharmacology, 1985, 107, 119-125.	1.7	16
267	Comparison of adrenergic receptor binding in blood cells from alcoholics and controls. Alcohol, 1984, 1, 369-372.	0.8	11
268	Calcium-dependent 86Rb efflux and ethanol intoxication: Studies of human red blood cells and rodent brain synaptosomes. European Journal of Pharmacology, 1983, 88, 357-363.	1.7	20
269	Effects of a sedative and a convulsant barbiturate on synaptosomal calcium transport. Brain Research, 1982, 242, 157-163.	1.1	24
270	Reduction of Brain Calcium After Consumption of Diets Deficient in Calcium or Vitamin D. Journal of Neurochemistry, 1981, 36, 460-466.	2.1	19

#	Article	IF	CITATIONS
271	Impairment of avoidance behavior following short-term ingestion of ethanol, tertiary-butanol, or pentobarbital in mice. Psychopharmacology, 1980, 69, 53-57.	1.5	10
272	Aminophospholipid Asymmetry in Murine Synaptosomal Plasma Membrane. Journal of Neurochemistry, 1980, 34, 269-277.	2.1	114
273	Impairment of avoidance behavior following short-term ingestion of alcohol. Psychopharmacology, 1979, 63, 251-257.	1.5	6
274	Behavioral and biochemical effects of chronic consumption of ethanol by hamsters. Pharmacology Biochemistry and Behavior, 1979, 10, 343-347.	1.3	28
275	Alteration of alcohol effects by calcium and other inorganic cations. Pharmacology Biochemistry and Behavior, 1979, 10, 527-534.	1.3	42
276	Neuronal membrane lipid asymmetry. Life Sciences, 1979, 24, 395-399.	2.0	38
277	Metabolism of Calcium and Magnesium during Ethanol Intoxication and Withdrawal. , 1979, , 27-41.		10
278	ALTERATION OF ALCOHOL EFFECTS BY CALCIUM AND OTHER CATIONS. , 1978, , 31.		1
279	Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sciences, 1977, 20, 501-505.	2.0	95
280	Stereoselective effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) on schedule-controlled behavior. Pharmacology Biochemistry and Behavior, 1977, 7, 307-310.	1.3	8
281	Analgetic effects of lanthanum: cross-tolerance with morphine. Brain Research, 1975, 100, 221-225.	1.1	24