Cyrill Bussy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1854492/publications.pdf

Version: 2024-02-01

66 papers	3,313 citations	147801 31 h-index	56 g-index
72	72	72	5029
all docs	docs citatio	ons times rank	ed citing authors

#	Article	IF	CITATIONS
1	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	14.6	438
2	Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes. Accounts of Chemical Research, 2013, 46, 692-701.	15.6	285
3	Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10952-10957.	7.1	217
4	Adverse Effects of Industrial Multiwalled Carbon Nanotubes on Human Pulmonary Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 72, 60-73.	2.3	129
5	Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8, 1109.	12.8	111
6	<i>In vivo</i> degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine, 2012, 7, 1485-1494.	3.3	104
7	Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano, 2015, 9, 7815-7830.	14.6	86
8	Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Advanced Materials Interfaces, 2019, 6, 1900229.	3.7	86
9	Live Imaging of Label-Free Graphene Oxide Reveals Critical Factors Causing Oxidative-Stress-Mediated Cellular Responses. ACS Nano, 2018, 12, 1373-1389.	14.6	83
10	Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Particle and Fibre Toxicology, 2011, 8, 3.	6.2	74
11	Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Particle and Fibre Toxicology, 2012, 9, 46.	6.2	73
12	A blueprint for the synthesis and characterisation of thin graphene oxide with controlled lateral dimensions for biomedicine. 2D Materials, 2018, 5, 035020.	4.4	73
13	The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 2016, 10, 10753-10767.	14.6	70
14	The brain is a target organ after acute exposure to depleted uranium. Toxicology, 2005, 212, 219-226.	4.2	68
15	Bioaccumulation and behavioural effects of depleted uranium in rats exposed to repeated inhalations. Neuroscience Letters, 2005, 390, 31-36.	2.1	67
16	Design, engineering and structural integrity of electro-responsive carbon nanotube- based hydrogels for pulsatile drug release. Journal of Materials Chemistry B, 2013, 1, 4593.	5.8	63
17	Enriched But Not Depleted Uranium Affects Central Nervous System In Long-Term Exposed Rat. NeuroToxicology, 2005, 26, 1015-1020.	3.0	62
18	Carbon Nanotubes in Macrophages: Imaging and Chemical Analysis by X-ray Fluorescence Microscopy. Nano Letters, 2008, 8, 2659-2663.	9.1	61

#	Article	IF	CITATIONS
19	Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain. NeuroToxicology, 2006, 27, 245-252.	3.0	58
20	Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale, 2016, 8, 590-601.	5.6	52
21	Splenic Capture and <i>In Vivo</i> Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS Nano, 2020, 14, 10168-10186.	14.6	51
22	Gadolinium-functionalised multi-walled carbon nanotubes as a T 1 contrast agent for MRI cell labelling and tracking. Carbon, 2016, 97, 126-133.	10.3	50
23	Biodegradation of carbon nanohorns in macrophage cells. Nanoscale, 2015, 7, 2834-2840.	5.6	48
24	The current graphene safety landscape – a literature mining exercise. Nanoscale, 2015, 7, 6432-6435.	5.6	47
25	Sizeâ€Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safeâ€byâ€Design. Advanced Science, 2020, 7, 1903200.	11.2	44
26	Changes in sleep–wake cycle after chronic exposure to uranium in rats. Neurotoxicology and Teratology, 2005, 27, 835-840.	2.4	41
27	Hemotoxicity of carbon nanotubes. Advanced Drug Delivery Reviews, 2013, 65, 2127-2134.	13.7	41
28	Peptide Nanofiber Complexes with siRNA for Deep Brain Gene Silencing by Stereotactic Neurosurgery. ACS Nano, 2015, 9, 1137-1149.	14.6	41
29	3D Organotypic Spinal Cultures: Exploring Neuron and Neuroglia Responses Upon Prolonged Exposure to Graphene Oxide. Frontiers in Systems Neuroscience, 2019, 13, 1.	2.5	40
30	In Vivo Cell Reprogramming towards Pluripotency by Virus-Free Overexpression of Defined Factors. PLoS ONE, 2013, 8, e54754.	2.5	39
31	Polyamine functionalized carbon nanotubes: synthesis, characterization, cytotoxicity and siRNA binding. Journal of Materials Chemistry, 2011, 21, 4850.	6.7	38
32	Graphene oxide as a 2D platform for complexation and intracellular delivery of siRNA. Nanoscale, 2019, 11, 13863-13877.	5.6	35
33	Modulating <i>in vitro</i> bone cell and macrophage behavior by immobilized enzymatically tailored pectins. Journal of Biomedical Materials Research - Part A, 2008, 86A, 597-606.	4.0	32
34	Heterogeneous accumulation of uranium in the brain of rats. Radiation Protection Dosimetry, 2007, 127, 86-89.	0.8	29
35	Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. Particle and Fibre Toxicology, 2013, 10, 24.	6.2	29
36	Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 995-1003.	2.4	28

#	Article	IF	CITATIONS
37	Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns. Npj 2D Materials and Applications, 2017, 1 , .	7.9	26
38	Direct visualization of carbon nanotube degradation in primary cells by photothermal imaging. Nanoscale, 2017, 9, 4642-4645.	5.6	25
39	Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Archives of Toxicology, 2018, 92, 3359-3379.	4.2	24
40	Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an <i>in vivo</i> zebrafish model. Nanoscale Horizons, 2020, 5, 1250-1263.	8.0	21
41	Comparison of the effects of enriched uranium and 137-cesium on the behaviour of rats after chronic exposure. International Journal of Radiation Biology, 2007, 83, 99-104.	1.8	20
42	Parental exposure to enriched uranium induced delayed hyperactivity in rat offspring. NeuroToxicology, 2007, 28, 108-113.	3.0	20
43	Graphene-based papers as substrates for cell growth: Characterisation and impact on mammalian cells. FlatChem, 2018, 12, 17-25.	5.6	20
44	Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials. Small, 2020, 16, e2004029.	10.0	19
45	The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. Journal of Controlled Release, 2021, 338, 330-340.	9.9	19
46	Nextâ€Generation Sequencing Reveals Differential Responses to Acute versus Longâ€Term Exposures to Graphene Oxide in Human Lung Cells. Small, 2020, 16, e1907686.	10.0	18
47	Culture Media Critically Influence Graphene Oxide Effects on Plasma Membranes. CheM, 2017, 2, 322-323.	11.7	17
48	Dynamic interactions and intracellular fate of label-free, thin graphene oxide sheets within mammalian cells: role of lateral sheet size. Nanoscale Advances, 2021, 3, 4166-4185.	4.6	17
49	Generation of induced pluripotent stem cells from virus-free inÂvivo reprogramming of BALB/c mouse liver cells. Biomaterials, 2014, 35, 8312-8320.	11.4	16
50	Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. Journal of Hazardous Materials, 2022, 435, 129053.	12.4	16
51	Peptide nanofibres as molecular transporters: from self-assembly to in vivo degradation. Faraday Discussions, 2013, 166, 181.	3.2	15
52	Deep Tissue Translocation of Graphene Oxide Sheets in Human Glioblastoma 3D Spheroids and an Orthotopic Xenograft Model. Advanced Therapeutics, 2021, 4, 2000109.	3.2	14
53	Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets. Advanced Science, 2022, 9, e2104559.	11.2	13
54	Effect of U and 137Cs chronic contamination on dopamine and serotonin metabolism in the central nervous system of the rat. Canadian Journal of Physiology and Pharmacology, 2004, 82, 161-166.	1.4	12

#	Article	IF	CITATIONS
55	Carbon nanotubes in medicine and biology â€" Safety and toxicology. Advanced Drug Delivery Reviews, 2013, 65, 2061-2062.	13.7	12
56	In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors. Journal of Visualized Experiments, 2013, , e50837.	0.3	10
57	Nose-to-Brain Translocation and Cerebral Biodegradation of Thin Graphene Oxide Nanosheets. Cell Reports Physical Science, 2020, 1, 100176.	5.6	10
58	Adsorption of P103 Nanoaggregates on Graphene Oxide Nanosheets: Role of Electrostatic Forces in Improving Nanosheet Dispersion. Langmuir, 2021, 37, 867-873.	3.5	8
59	Primary microglia maintain their capacity to function despite internalisation and intracellular loading with carbon nanotubes. Nanoscale Horizons, 2017, 2, 284-296.	8.0	7
60	Therapeutic Applications. , 2012, , 285-313.		6
61	The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials. Archives of Toxicology, 2015, 89, 1543-1556.	4.2	6
62	Modulation of fibroblast behaviour by enzymatically-tailored pectins: PectiCoat. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 171-172.	1.6	1
63	Assessing the Adverse Effects of Two-Dimensional Materials Using Cell Culture-Based Models. , 2019, , 1-46.		1
64	Effects of Polymer-Coated Multi-Wall Carbon Nanotubes on Mouse RAW 264.7 Macrophages, 2009, , .		0
65	Coating With A Polystyren Polymer Protects Against Respiratory Toxicity Of Carbon Nanotubes In Vivo In Mice. , 2010, , .		0
66	â€~Science in the city': bringing nanoscale medicine alive. Materials Today, 2017, 20, 1-2.	14.2	0