Stephen B Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1854392/publications.pdf

Version: 2024-02-01

33	1,327	20	33
papers	citations	h-index	g-index
33	33	33	833
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pulmonary surfactant: phase behavior and function. Current Opinion in Structural Biology, 2002, 12, 487-494.	5.7	129
2	Persistence of Phase Coexistence in Disaturated Phosphatidylcholine Monolayers at High Surface Pressures. Biophysical Journal, 1999, 77, 3134-3143.	0.5	116
3	Phase Separation in Monolayers of Pulmonary Surfactant Phospholipids at the Air–Water Interface: Composition and Structure. Biophysical Journal, 1999, 77, 2051-2061.	0.5	98
4	The biophysical function of pulmonary surfactant. Respiratory Physiology and Neurobiology, 2008, 163, 244-255.	1.6	98
5	Rapid Compression Transforms Interfacial Monolayers of Pulmonary Surfactant. Biophysical Journal, 2001, 80, 1863-1872.	0.5	92
6	Distinct Steps in the Adsorption of Pulmonary Surfactant to an Air-Liquid Interface. Biophysical Journal, 2000, 78, 257-266.	0.5	86
7	Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers. Biophysical Journal, 2003, 84, 3792-3806.	0.5	81
8	Metastability of a Supercompressed Fluid Monolayer. Biophysical Journal, 2003, 85, 3048-3057.	0.5	73
9	Neutral Lipids Induce Critical Behavior in Interfacial Monolayers of Pulmonary Surfactantâ€. Biochemistry, 1999, 38, 374-383.	2.5	71
10	Thermodynamic Effects of the Hydrophobic Surfactant Proteins on the Early Adsorption of Pulmonary Surfactant. Biophysical Journal, 2001, 81, 1536-1546.	0.5	59
11	Unscheduled apoptosis during acute inflammatory lung injury. Cell Death and Differentiation, 1997, 4, 600-607.	11.2	56
12	Recent advances in alveolar biology: Some new looks at the alveolar interface. Respiratory Physiology and Neurobiology, 2010, 173, S55-S64.	1.6	48
13	Effect of neutral lipids on coexisting phases in monolayers of pulmonary surfactant. Biophysical Chemistry, 2002, 101-102, 333-345.	2.8	35
14	SP-B and SP-C Alter Diffusion in Bilayers of Pulmonary Surfactant. Biophysical Journal, 2004, 86, 3734-3743.	0.5	32
15	Hydrophobic Surfactant Proteins Induce a Phosphatidylethanolamine to Form Cubic Phases. Biophysical Journal, 2010, 98, 1549-1557.	0.5	32
16	The melting of pulmonary surfactant monolayers. Journal of Applied Physiology, 2007, 102, 1739-1745.	2.5	29
17	Differential Effects of Lysophosphatidylcholine on the Adsorption of Phospholipids to an Air/Water Interface. Biophysical Journal, 2007, 92, 493-501.	0.5	27
18	Effects of gramicidin-A on the adsorption of phospholipids to the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1717, 41-49.	2.6	26

#	Article	IF	CITATIONS
19	Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature. Biophysical Journal, 2015, 109, 95-105.	0.5	23
20	Differential Effects of the Hydrophobic Surfactant Proteins on the Formation of Inverse Bicontinuous Cubic Phases. Langmuir, 2012, 28, 16596-16604.	3.5	21
21	An Anionic Phospholipid Enables the Hydrophobic Surfactant Proteins to Alter Spontaneous Curvature. Biophysical Journal, 2013, 104, 594-603.	0.5	16
22	Non-cooperative effects of lung surfactant proteins on early adsorption to an air/water interface. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1616, 165-173.	2.6	14
23	The Accelerated Late Adsorption of Pulmonary Surfactant. Langmuir, 2011, 27, 4857-4866.	3.5	14
24	Location of the Hydrophobic Surfactant Proteins, SP-B and SP-C, in Fluid-Phase Bilayers. Journal of Physical Chemistry B, 2020, 124, 6763-6774.	2.6	11
25	The Lî ³ Phase of Pulmonary Surfactant. Langmuir, 2018, 34, 6601-6611.	3.5	10
26	The Equilibrium Spreading Tension of Pulmonary Surfactant. Langmuir, 2015, 31, 13063-13067.	3.5	9
27	Distribution of Coexisting Solid and Fluid Phases Alters the Kinetics of Collapse from Phospholipid Monolayersâ€. Journal of Physical Chemistry B, 2006, 110, 22064-22070.	2.6	7
28	The Anionic Phospholipids of Bovine Pulmonary Surfactant. Lipids, 2021, 56, 49-57.	1.7	5
29	Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles. Langmuir, 2020, 36, 13439-13447.	3.5	3
30	Suppression of $\hat{Ll_{\pm}}/\hat{Ll_{2}}$ Phase Coexistence in the Lipids of Pulmonary Surfactant. Biophysical Journal, 2021, 120, 243-253.	0.5	3
31	Optical Factors in the Rapid Analysis of Captive Bubbles. Langmuir, 2012, 28, 14081-14089.	3.5	1
32	Aligning pitch for measurements of the shape of captive bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 397, 59-62.	4.7	1
33	Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles. Soft Matter, 2021, 17, 3358-3366.	2.7	1