

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Somatic reversion of pathogenic DOCK8 variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency. Journal of Clinical Investigation, 2021, 131, .	8.2	18
2	Genomic Spectrum and Phenotypic Heterogeneity of Human IL-21 Receptor Deficiency. Journal of Clinical Immunology, 2021, 41, 1272-1290.	3.8	25
3	High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency. Journal of Experimental Medicine, 2021, 218, .	8.5	25
4	Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nature Medicine, 2021, 27, 1646-1654.	30.7	65
5	Molecular regulation and dysregulation of T follicular helper cells – learning from inborn errors of immunity. Current Opinion in Immunology, 2021, 72, 249-261.	5.5	6
6	The expansion of human T-bet ^{high} CD21 ^{low} B cells is T cell dependent. Science Immunology, 2021, 6, eabh0891.	11.9	82
7	Diversity of XMEN Disease: Description of 2 Novel Variants and Analysis of the Lymphocyte Phenotype. Journal of Clinical Immunology, 2020, 40, 299-309.	3.8	25
8	Human T-bet Governs Innate and Innate-like Adaptive IFN-Î ³ Immunity against Mycobacteria. Cell, 2020, 183, 1826-1847.e31.	28.9	83
9	Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome. Journal of Clinical Immunology, 2020, 40, 807-819.	3.8	44
10	Everolimus-Induced Remission of Classic Kaposi's Sarcoma Secondary to Cryptic Splicing Mediated CTLA4 Haploinsufficiency. Journal of Clinical Immunology, 2020, 40, 774-779.	3.8	5
11	Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood, 2020, 136, 2638-2655.	1.4	64
12	Systemic Inflammation and Myelofibrosis in a Patient with Takenouchi-Kosaki Syndrome due to CDC42 Tyr64Cys Mutation. Journal of Clinical Immunology, 2020, 40, 567-570.	3.8	29
13	<scp>OMIP</scp> â€ <scp>063</scp> : 28 olor Flow Cytometry Panel for Broad Human Immunophenotyping. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 777-781.	1.5	26
14	Flow Cytometric-Based Analysis of Defects in Lymphocyte Differentiation and Function Due to Inborn Errors of Immunity. Frontiers in Immunology, 2019, 10, 2108.	4.8	24
15	An essential role for the Zn2+ transporter ZIP7 in B cell development. Nature Immunology, 2019, 20, 350-361.	14.5	92
16	The FOXP3Δ2 isoform supports Treg cell development and protects against severe IPEX syndrome. Journal of Allergy and Clinical Immunology, 2019, 144, 317-320.e8.	2.9	20
17	B cell–intrinsic requirement for STK4 in humoral immunity in mice and human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2302-2305.	2.9	21
18	Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4+ T cells. Journal of Allergy and Clinical Immunology, 2019, 144, 236-253.	2.9	44

#	Article	IF	CITATIONS
19	Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunology and Cell Biology, 2019, 97, 389-402.	2.3	39
20	Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β. Science Immunology, 2019, 4, .	11.9	45
21	What can primary immunodeficiencies teach us about Th9 cell differentiation and function?. Immunology and Cell Biology, 2019, 97, 380-388.	2.3	4
22	Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight, 2019, 4, .	5.0	23
23	STAT3 regulates cytotoxicity of human CD57+ CD4+ T cells in blood and lymphoid follicles. Scientific Reports, 2018, 8, 3529.	3.3	29
24	Combined Immunodeficiency with Ring Chromosome 21. Journal of Clinical Immunology, 2018, 38, 251-256.	3.8	2
25	Reversible Suppression of Lymphoproliferation and Thrombocytopenia with Rapamycin in a Patient with Common Variable Immunodeficiency. Journal of Clinical Immunology, 2018, 38, 159-162.	3.8	3
26	Human plasma C3 is essential for the development of memory B, but not T, lymphocytes. Journal of Allergy and Clinical Immunology, 2018, 141, 1151-1154.e14.	2.9	26
27	Human IFN- \hat{I}^3 immunity to mycobacteria is governed by both IL-12 and IL-23. Science Immunology, 2018, 3, .	11.9	152
28	Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common <i>TYK2</i> missense variant. Science Immunology, 2018, 3, .	11.9	148
29	Chronic Aichi Virus Infection in a Patient with X-Linked Agammaglobulinemia. Journal of Clinical Immunology, 2018, 38, 748-752.	3.8	18
30	Signal Transducer and Activator of Transcription 3 Control of Human T and B Cell Responses. Frontiers in Immunology, 2018, 9, 168.	4.8	50
31	IRF4 haploinsufficiency in a family with Whipple's disease. ELife, 2018, 7, .	6.0	43
32	Germline-activating mutations in <i>PIK3CD</i> compromise B cell development and function. Journal of Experimental Medicine, 2018, 215, 2073-2095.	8.5	79
33	Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nature Immunology, 2018, 19, 973-985.	14.5	96
34	Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nature Communications, 2018, 9, 3372.	12.8	88
35	A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Science Immunology, 2018, 3, .	11.9	132
36	The circulating life of a memory T-follicular helper cell. Clinical and Translational Immunology, 2017, 6. e141.	3.8	9

#	Article	IF	CITATIONS
37	Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies. Journal of Immunology, 2017, 199, 1949-1958.	0.8	23
38	Here, there and everywhere: T follicular helper cells on the move. Immunology, 2017, 152, 382-387.	4.4	23
39	DOCK8 Drives Src-Dependent NK Cell Effector Function. Journal of Immunology, 2017, 199, 2118-2127.	0.8	18
40	Dedicator of cytokinesis 8–deficient CD4 + TÂcells are biased to a T H 2 effector fate at the expense of T H 1 and T H 17Âcells. Journal of Allergy and Clinical Immunology, 2017, 139, 933-949.	2.9	69
41	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	8.2	115
42	Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets. Journal of Experimental Medicine, 2016, 213, 1589-1608.	8.5	77
43	Cytotoxic T cells that escape exhaustion. Nature, 2016, 537, 312-314.	27.8	6
44	IL-27 Directly Enhances Germinal Center B Cell Activity and Potentiates Lupus in <i>Sanroque</i> Mice. Journal of Immunology, 2016, 197, 3008-3017.	0.8	27
45	Dual T cell– and B cell–intrinsic deficiency in humans with biallelic <i>RLTPR</i> mutations. Journal of Experimental Medicine, 2016, 213, 2413-2435.	8.5	117
46	Human T Follicular Helper Cells in Primary Immunodeficiency: Quality Just as Important as Quantity. Journal of Clinical Immunology, 2016, 36, 40-47.	3.8	9
47	Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2015, 136, 993-1006.e1.	2.9	181
48	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	12.6	366
49	FAS Inactivation Releases Unconventional Germinal Center B Cells that Escape Antigen Control and Drive IgE and Autoantibody Production. Immunity, 2015, 42, 890-902.	14.3	77
50	STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. Journal of Experimental Medicine, 2015, 212, 855-864.	8.5	70
51	Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. Journal of Experimental Medicine, 2015, 212, 1641-1662.	8.5	293
52	Human T follicular helper cells in primary immunodeficiencies. Current Opinion in Pediatrics, 2014, 26, 720-726.	2.0	15
53	Human T follicular helper (Tfh) cells and disease. Immunology and Cell Biology, 2014, 92, 64-71.	2.3	152
54	STAT3 is a central regulator of lymphocyte differentiation and function. Current Opinion in Immunology, 2014, 28, 49-57.	5.5	76

#	Article	IF	CITATIONS
55	Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8+ T-cell memory formation and function. Journal of Allergy and Clinical Immunology, 2013, 132, 400-411.e9.	2.9	63
56	IL-21 signalling via STAT3 primes human naÃ⁻ve B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood, 2013, 122, 3940-3950.	1.4	121
57	Circulating Precursor CCR7loPD-1hi CXCR5+ CD4+ T Cells Indicate Tfh Cell Activity and Promote Antibody Responses upon Antigen Reexposure. Immunity, 2013, 39, 770-781.	14.3	571
58	The good, the bad and the ugly — TFH cells in human health and disease. Nature Reviews Immunology, 2013, 13, 412-426.	22.7	475
59	Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. Journal of Experimental Medicine, 2013, 210, 1743-1759.	8.5	119
60	Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. Journal of Experimental Medicine, 2013, 210, 2739-2753.	8.5	158
61	DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.	1.4	68
62	A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCRââ,¬â€œ B cells. Journal of Clinical Investigation, 2013, 123, 4781-4785.	8.2	94
63	Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. Journal of Experimental Medicine, 2012, 209, 913-924.	8.5	59
64	Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood, 2012, 119, 3997-4008.	1.4	267
65	Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nature Immunology, 2012, 13, 35-43.	14.5	249
66	The origins, function, and regulation of T follicular helper cells. Journal of Experimental Medicine, 2012, 209, 1241-1253.	8.5	478
67	T cell–B cell interactions in primary immunodeficiencies. Annals of the New York Academy of Sciences, 2012, 1250, 1-13.	3.8	25
68	Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. Journal of Clinical Investigation, 2012, 122, 3239-3247.	8.2	134
69	The regulation and role of T follicular helper cells in immunity. Immunology, 2011, 134, 361-367.	4.4	89
70	The role of SAP and SLAM family molecules in the humoral immune response. Annals of the New York Academy of Sciences, 2011, 1217, 32-44.	3.8	31
71	A Subset of Interleukin-21+ Chemokine Receptor CCR9+ T Helper Cells Target Accessory Organs of the Digestive System in Autoimmunity. Immunity, 2011, 34, 602-615.	14.3	104
72	Regulation of T follicular helper cell formation and function by antigen presenting cells. Current Opinion in Immunology, 2011, 23, 111-118.	5.5	74

#	Article	IF	CITATIONS
73	DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. Journal of Experimental Medicine, 2011, 208, 2305-2320.	8.5	175
74	CXCR5 Expressing Human Central Memory CD4 T Cells and Their Relevance for Humoral Immune Responses. Journal of Immunology, 2011, 186, 5556-5568.	0.8	296
75	Follicular Helper T Cell Differentiation Requires Continuous Antigen Presentation that Is Independent of Unique B Cell Signaling. Immunity, 2010, 33, 241-253.	14.3	299
76	Human Th9 cells: inflammatory cytokines modulate ILâ€9 production through the induction of ILâ€21. Immunology and Cell Biology, 2010, 88, 621-623.	2.3	24
77	Comprehensive analysis of the cytokine-rich chromosome 5q31.1 region suggests a role for IL-4 gene variants in prostate cancer risk. Carcinogenesis, 2010, 31, 1748-1754.	2.8	38
78	B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. Journal of Experimental Medicine, 2010, 207, 155-171.	8.5	346
79	IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. Journal of Experimental Medicine, 2010, 207, 2895-2906.	8.5	185
80	Early commitment of naÃ⁻ve human CD4 ⁺ T cells to the T follicular helper (T _{FH}) cell lineage is induced by ILâ€12. Immunology and Cell Biology, 2009, 87, 590-600.	2.3	310
81	Helping the Helpers!. Immunity, 2009, 31, 12-14.	14.3	5
82	The Transcriptional Repressor Bcl-6 Directs T Follicular Helper Cell Lineage Commitment. Immunity, 2009, 31, 457-468.	14.3	1,041
83	Inborn errors of interferon (IFN)â€mediated immunity in humans: insights into the respective roles of IFNâ€Î±/β, IFNâ€Î³, and IFNâ€Î» in host defense. Immunological Reviews, 2008, 226, 29-40.	6.0	271
84	Deficiency of Th17 cells in hyper IgE syndrome due to mutations in <i>STAT3 </i> . Journal of Experimental Medicine, 2008, 205, 1551-1557.	8.5	610
85	IL-21-Induced Isotype Switching to IgG and IgA by Human Naive B Cells Is Differentially Regulated by IL-4. Journal of Immunology, 2008, 181, 1767-1779.	0.8	240
86	STAT3 is required for IL-21–induced secretion of IgE from human naive B cells. Blood, 2008, 112, 1784-1793.	1.4	117
87	Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM+IgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood, 2008, 112, 672-679.	1.4	36
88	Cytokine-Mediated Regulation of Human B Cell Differentiation into Ig-Secreting Cells: Predominant Role of IL-21 Produced by CXCR5+ T Follicular Helper Cells. Journal of Immunology, 2007, 179, 8180-8190.	0.8	459
89	Regulation of Cellular and Humoral Immune Responses by the SLAM and SAP Families of Molecules. Annual Review of Immunology, 2007, 25, 337-379.	21.8	229
90	Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP. International Immunology, 2006, 18, 1055-1065.	4.0	15

#	Article	IF	CITATIONS
91	Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. Journal of Clinical Investigation, 2006, 116, 322-333.	8.2	122
92	Regulation of NKT cell development by SAP, the protein defective in XLP. Nature Medicine, 2005, 11, 340-345.	30.7	349
93	Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunological Reviews, 2005, 203, 180-199.	6.0	200
94	Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. Journal of Clinical Investigation, 2005, 115, 1049-1059.	8.2	139
95	Automatic generation of lymphocyte heterogeneity: Divisionâ€dependent changes in the expression of CD27, CCR7 and CD45 by activated human naive CD4 + T cells are independently regulated. Immunology and Cell Biology, 2004, 82, 67-74.	2.3	24
96	Isotype Switching by Human B Cells Is Division-Associated and Regulated by Cytokines. Journal of Immunology, 2002, 169, 4298-4306.	0.8	181