Justin R Barone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853927/publications.pdf

Version: 2024-02-01

47 papers 1,437 citations

331670
21
h-index

330143 37 g-index

49 all docs 49 docs citations

49 times ranked 1680 citing authors

#	Article	IF	CITATIONS
1	Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology, 2005, 65, 173-181.	7.8	205
2	Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology, 2005, 65, 683-692.	7.8	123
3	Thermally processed keratin films. Journal of Applied Polymer Science, 2005, 97, 1644-1651.	2.6	117
4	Extrusion of feather keratin. Journal of Applied Polymer Science, 2006, 100, 1432-1442.	2.6	93
5	Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose, 2010, 17, 57-68.	4.9	69
6	Morphology selection via geometric frustration in chiral filament bundles. Nature Materials, 2016, 15, 727-732.	27.5	59
7	Thermally processed levan polymers. Carbohydrate Polymers, 2007, 69, 554-561.	10.2	55
8	Evolution of the Amyloid Fiber over Multiple Length Scales. ACS Nano, 2013, 7, 1006-1015.	14.6	52
9	Peptide Mixtures Can Self-Assemble into Large Amyloid Fibers of Varying Size and Morphology. Biomacromolecules, 2011, 12, 3770-3779.	5.4	48
10	Conformational Changes and Molecular Mobility in Plasticized Proteins. Biomacromolecules, 2008, 9, 3181-3187.	5.4	40
11	A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers. PLoS Pathogens, 2015, 11, e1005017.	4.7	38
12	The effect of processing on large, self-assembled amyloid fibers. Soft Matter, 2012, 8, 10298.	2.7	33
13	Lignocellulosic Fiber-Reinforced Keratin Polymer Composites. Journal of Polymers and the Environment, 2009, 17, 143-151.	5.0	31
14	Characterization of Large Amyloid Fibers and Tapes with Fourier Transform Infrared (FT-IR) and Raman Spectroscopy. Applied Spectroscopy, 2013, 67, 1417-1426.	2.2	31
15	Blends of Cysteine-Containing Proteins. Journal of Agricultural and Food Chemistry, 2006, 54, 5393-5399.	5.2	30
16	Enzyme-mediated self-assembly of highly ordered structures from disordered proteins. Smart Materials and Structures, 2009, 18, 104024.	3.5	30
17	The Role of Protein Hydrophobicity in Conformation Change and Self-Assembly into Large Amyloid Fibers. Biomacromolecules, 2014, 15, 1240-1247.	5.4	30
18	Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP). Bioresource Technology, 2016, 199, 148-154.	9.6	30

#	Article	IF	Citations
19	Transport and characterization of microplastics in inland waterways. Journal of Water Process Engineering, 2020, 38, 101640.	5 . 6	30
20	Nonfood Applications of Proteinaceous Renewable Materials. Journal of Chemical Education, 2006, 83, 1003.	2.3	27
21	Protein Substitution Affects Glass Transition Temperature and Thermal Stability. Journal of Agricultural and Food Chemistry, 2010, 58, 9549-9555.	5.2	23
22	Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis. RSC Advances, 2016, 6, 30234-30246.	3.6	22
23	Biomass Fractionation after Denaturing Cell Walls by Glycerol Thermal Processing. ACS Sustainable Chemistry and Engineering, 2015, 3, 413-420.	6.7	21
24	Flow birefringence study of sharkskin and stress relaxation in polybutadiene melts. Rheologica Acta, 1999, 38, 404-414.	2.4	19
25	Reducing the heterogeneity of xylan through processing. Carbohydrate Polymers, 2016, 150, 250-258.	10.2	17
26	Bending, curling, and twisting in polymeric bilayers. Soft Matter, 2019, 15, 4541-4547.	2.7	17
27	Characterization of dimensional stability in flax fiber reinforced polypropylene composites. Polymer Composites, 2019, 40, 132-140.	4.6	15
28	Wheat Gluten Plasticized with Its Own Hydrolysate. Journal of Polymers and the Environment, 2014, 22, 430-438.	5.0	13
29	Adhesive wall slip on organic surfaces. Journal of Non-Newtonian Fluid Mechanics, 2000, 91, 31-36.	2.4	11
30	Stearic acid solubility and cubic phase volume. Chemistry and Physics of Lipids, 2006, 142, 23-32.	3.2	11
31	Mechanical and thermal properties of polyolefin thermoplastic elastomer blends. Plastics, Rubber and Composites, 2019, 48, 338-346.	2.0	11
32	Quantifying amino acid and protein substitution using Raman spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 355-362.	2.5	10
33	Genetically encoded self-assembly of large amyloid fibers. Biomaterials Science, 2014, 2, 560-566.	5.4	10
34	Wheat Gluten Aggregates as a Reinforcement for Poly(vinyl alcohol) Films. ACS Sustainable Chemistry and Engineering, 2018, 6, 2422-2430.	6.7	10
35	Completely self-assembled fiber composites. Composites Science and Technology, 2015, 117, 1-8.	7.8	8
36	Biologically controlled gelatin actuators. Green Materials, 2021, 9, 157-166.	2.1	7

#	Article	IF	CITATIONS
37	Evaluation of polymer rheology from drop spreading experiments. Chemical Engineering Science, 2005, 60, 2579-2584.	3.8	6
38	Chemistry between crosslinks affects the properties of peptide hydrogels. Materials Science and Engineering C, 2011, 31, 1042-1049.	7.3	6
39	Proteinâ€polyisoprene rubber composites. Journal of Applied Polymer Science, 2018, 135, 46026.	2.6	5
40	Proteinâ€ŧransition metal ion networks. Journal of Applied Polymer Science, 2007, 106, 1518-1525.	2.6	4
41	Design and Construction of Large Amyloid Fibers. Fibers, 2015, 3, 90-102.	4.0	4
42	Agricultural proteins as multifunctional additives in ZnOâ€free synthetic isoprene rubber vulcanizates. Journal of Applied Polymer Science, 2019, 136, 48141.	2.6	4
43	Mechanically cycling gelatin bilayers. Smart Materials and Structures, 2022, 31, 085005.	3.5	3
44	Ureolytic Activity of Soybean and Corn Residue Extracts. Communications in Soil Science and Plant Analysis, 2014, 45, 2959-2969.	1.4	2
45	Hydrolyzed wheat protein as a self-assembled reinforcing filler in synthetic isoprene rubber vulcanizates. Industrial Crops and Products, 2019, 141, 111815.	5.2	2
46	Large Self-Assembled Peptide Fibers. Materials Research Society Symposia Proceedings, 2011, 1301, 131.	0.1	1
47	Protein aggregation in aqueous poly(vinyl alcohol) solutions. Green Materials, 2020, 8, 32-39.	2.1	1