List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853799/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nonlinear wind-drift ocean currents in arctic regions. Geophysical and Astrophysical Fluid Dynamics, 2022, 116, 101-115.                                                  | 0.4 | 9         |
| 2  | Comments on: nonlinear wind-drift ocean currents in arctic regions. Geophysical and Astrophysical Fluid Dynamics, 2022, 116, 116-121.                                     | 0.4 | 3         |
| 3  | On the propagation of nonlinear waves in the atmosphere. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2022, 478, 20210895.     | 1.0 | 13        |
| 4  | Preface to the special issue on analysis of geophysical phenomena. Communications on Pure and Applied Analysis, 2022, 21, i.                                              | 0.4 | 0         |
| 5  | Stratospheric Planetary Flows from the Perspective of the Euler Equation on a Rotating Sphere.<br>Archive for Rational Mechanics and Analysis, 2022, 245, 587-644.        | 1.1 | 13        |
| 6  | Frictional effects in wind-driven ocean currents. Geophysical and Astrophysical Fluid Dynamics, 2021, 115, 1-14.                                                          | 0.4 | 32        |
| 7  | Equatorial Wave–Current Interactions. Advances in Mathematical Fluid Mechanics, 2021, , 49-92.                                                                            | 0.1 | 1         |
| 8  | Stuart-type polar vortices on a rotating sphere. Discrete and Continuous Dynamical Systems, 2021, 41, 201-215.                                                            | 0.5 | 9         |
| 9  | On the propagation of waves in the atmosphere. Proceedings of the Royal Society A: Mathematical,<br>Physical and Engineering Sciences, 2021, 477, 20200424.               | 1.0 | 19        |
| 10 | On the modelling of large-scale atmospheric flow. Journal of Differential Equations, 2021, 285, 751-798.                                                                  | 1.1 | 33        |
| 11 | Liouville chains: new hybrid vortex equilibria of the two-dimensional Euler equation. Journal of Fluid<br>Mechanics, 2021, 921, .                                         | 1.4 | 7         |
| 12 | Large-Amplitude Steady Downstream Water Waves. Communications in Mathematical Physics, 2021, 387, 237-266.                                                                | 1.0 | 11        |
| 13 | On the decrease of kinetic energy with depth in wave–current interactions. Mathematische Annalen,<br>2020, 378, 853-872.                                                  | 0.7 | 7         |
| 14 | The deflection angle between a wind-forced surface current and the overlying wind in an ocean with vertically varying eddy viscosity. Physics of Fluids, 2020, 32, .      | 1.6 | 13        |
| 15 | A transformation between stationary point vortex equilibria. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2020, 476, 20200310. | 1.0 | 4         |
| 16 | The Ekman spiral for piecewise-uniform viscosity. Ocean Science, 2020, 16, 1089-1093.                                                                                     | 1.3 | 23        |
| 17 | Steady point vortex pair in a field of Stuart-type vorticity. Journal of Fluid Mechanics, 2019, 874, .                                                                    | 1.4 | 8         |
| 18 | Equatorial Wave–Current Interactions. Communications in Mathematical Physics, 2019, 370, 1-48.                                                                            | 1.0 | 92        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Deflection Angle of Surface Ocean Currents From the Wind Direction. Journal of Geophysical Research: Oceans, 2019, 124, 7412-7420.                                                                                           | 1.0 | 29        |
| 20 | On the Nonlinear, Three-Dimensional Structure of Equatorial Oceanic Flows. Journal of Physical Oceanography, 2019, 49, 2029-2042.                                                                                                | 0.7 | 36        |
| 21 | Large-scale oceanic currents as shallow-water asymptotic solutions of the Navier-Stokes equation in rotating spherical coordinates. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 160, 32-40.                | 0.6 | 22        |
| 22 | Preface: Dynamics of ocean waves and currents. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 160, 1-2.                                                                                                       | 0.6 | 0         |
| 23 | Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem. Physics of Fluids, 2019, 31, .                                                                                      | 1.6 | 43        |
| 24 | Atmospheric Ekman Flows with Variable Eddy Viscosity. Boundary-Layer Meteorology, 2019, 170, 395-414.                                                                                                                            | 1.2 | 49        |
| 25 | Stuart-type vortices on a rotating sphere. Journal of Fluid Mechanics, 2019, 865, 1072-1084.                                                                                                                                     | 1.4 | 8         |
| 26 | Nonlinear water waves: introduction and overview. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170310.                                                                 | 1.6 | 3         |
| 27 | Introduction to the Special Issue on Mathematical Aspects of Physical Oceanography. Oceanography, 2018, 31, 12-13.                                                                                                               | O.5 | 0         |
| 28 | Steady Large-Scale Ocean Flows in Spherical Coordinates. Oceanography, 2018, 31, 42-50.                                                                                                                                          | 0.5 | 43        |
| 29 | A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific<br>Equatorial Undercurrent and thermocline. Physics of Fluids, 2017, 29, .                                                   | 1.6 | 76        |
| 30 | Gerstner waves in the presence of mean currents and rotation. Journal of Fluid Mechanics, 2017, 820, 511-528.                                                                                                                    | 1.4 | 82        |
| 31 | Dressing Method for the Degasperis–Procesi Equation. Studies in Applied Mathematics, 2017, 138, 205-226.                                                                                                                         | 1.1 | 36        |
| 32 | Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates.<br>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473,<br>20170063.                 | 1.0 | 50        |
| 33 | Nonlinear Water Waves. Lecture Notes in Mathematics, 2016, , .                                                                                                                                                                   | 0.1 | 2         |
| 34 | Extrema of the dynamic pressure in an irrotational regular wave train. Physics of Fluids, 2016, 28, 113604.                                                                                                                      | 1.6 | 21        |
| 35 | An Exact, Steady, Purely Azimuthal Flow as a Model for the Antarctic Circumpolar Current. Journal of Physical Oceanography, 2016, 46, 3585-3594.                                                                                 | 0.7 | 90        |
| 36 | Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3007-3012. | 0.9 | 12        |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Global bifurcation of steady gravity water waves with critical layers. Acta Mathematica, 2016, 217, 195-262.                                                        | 1.4 | 98        |
| 38 | Hamiltonian Formulation for Wave-Current Interactions in Stratified Rotational Flows. Archive for Rational Mechanics and Analysis, 2016, 221, 1417-1447.            | 1.1 | 60        |
| 39 | An Exact, Steady, Purely Azimuthal Equatorial Flow with a Free Surface. Journal of Physical<br>Oceanography, 2016, 46, 1935-1945.                                   | 0.7 | 124       |
| 40 | Exact Travelling Periodic Water Waves in Two-Dimensional Irrotational Flows. Lecture Notes in Mathematics, 2016, , 1-82.                                            | 0.1 | 3         |
| 41 | The time evolution of the maximal horizontal surface fluid velocity for an irrotational wave approaching breaking. Journal of Fluid Mechanics, 2015, 768, 468-475.  | 1.4 | 9         |
| 42 | The flow beneath a periodic travelling surface water wave. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 143001.                                    | 0.7 | 17        |
| 43 | A Penalization Method for Calculating the Flow Beneath Traveling Water Waves of Large Amplitude.<br>SIAM Journal on Applied Mathematics, 2015, 75, 1513-1535.       | 0.8 | 17        |
| 44 | Approximations of steady periodic water waves in flows with constant vorticity. Nonlinear Analysis:<br>Real World Applications, 2015, 25, 276-306.                  | 0.9 | 14        |
| 45 | A Hamiltonian approach to wave-current interactions in two-layer fluids. Physics of Fluids, 2015, 27, .                                                             | 1.6 | 49        |
| 46 | The dynamics of waves interacting with the Equatorial Undercurrent. Geophysical and Astrophysical Fluid Dynamics, 2015, 109, 311-358.                               | 0.4 | 189       |
| 47 | Some Nonlinear, Equatorially Trapped, Nonhydrostatic Internal Geophysical Waves. Journal of<br>Physical Oceanography, 2014, 44, 781-789.                            | 0.7 | 145       |
| 48 | Stokes waves in water with a non-flat bed. Journal of Fluid Mechanics, 2014, 740, 17-27.                                                                            | 1.4 | 5         |
| 49 | Estimating wave heights from pressure data at the bed. Journal of Fluid Mechanics, 2014, 743, .                                                                     | 1.4 | 24        |
| 50 | Mean Velocities in a Stokes Wave. Archive for Rational Mechanics and Analysis, 2013, 207, 907-917.                                                                  | 1.1 | 31        |
| 51 | Some Three-Dimensional Nonlinear Equatorial Flows. Journal of Physical Oceanography, 2013, 43, 165-175.                                                             | 0.7 | 132       |
| 52 | Instability of some equatorially trapped waves. Journal of Geophysical Research: Oceans, 2013, 118, 2802-2810.                                                      | 1.0 | 106       |
| 53 | Recovery of steady periodic wave profiles from pressure measurements at the bed. Journal of Fluid Mechanics, 2013, 714, 463-475.                                    | 1.4 | 60        |
| 54 | Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity.<br>Communications on Pure and Applied Analysis, 2012, 11, 1397-1406. | 0.4 | 18        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Particle trajectories in extreme Stokes waves. IMA Journal of Applied Mathematics, 2012, 77, 293-307.                                                                                 | 0.8 | 85        |
| 56 | Nonlinear water waves. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1501-1504.                                                   | 1.6 | 4         |
| 57 | On the open sea propagation of water waves generated by a moving bed. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1587-1601. | 1.6 | 4         |
| 58 | On the recovery of solitary wave profiles from pressure measurements. Journal of Fluid Mechanics, 2012, 699, 376-384.                                                                 | 1.4 | 40        |
| 59 | On the modelling of equatorial waves. Geophysical Research Letters, 2012, 39, .                                                                                                       | 1.5 | 112       |
| 60 | An exact solution for equatorially trapped waves. Journal of Geophysical Research, 2012, 117, .                                                                                       | 3.3 | 179       |
| 61 | Harmonic Maps and Ideal Fluid Flows. Archive for Rational Mechanics and Analysis, 2012, 204, 479-513.                                                                                 | 1.1 | 58        |
| 62 | Introduction to the special issue on hydrodynamic model equations. Communications on Pure and Applied Analysis, 2012, 11, i-iii.                                                      | 0.4 | 0         |
| 63 | Analyticity of periodic traveling free surface water waves with vorticity. Annals of Mathematics, 2011, 173, 559-568.                                                                 | 2.1 | 369       |
| 64 | Steady Periodic Water Waves with Constant Vorticity: Regularity and Local Bifurcation. Archive for<br>Rational Mechanics and Analysis, 2011, 199, 33-67.                              | 1.1 | 144       |
| 65 | A Dynamical Systems Approach Towards Isolated Vorticity Regions for Tsunami Background States.<br>Archive for Rational Mechanics and Analysis, 2011, 200, 239-253.                    | 1.1 | 16        |
| 66 | Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments. Archive for Rational<br>Mechanics and Analysis, 2011, 201, 251-269.                                      | 1.1 | 48        |
| 67 | Periodic Traveling Gravity Water Waves with Discontinuous Vorticity. Archive for Rational<br>Mechanics and Analysis, 2011, 202, 133-175.                                              | 1.1 | 86        |
| 68 | Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave<br>train. European Journal of Mechanics, B/Fluids, 2011, 30, 12-16.                    | 1.2 | 50        |
| 69 | Pressure beneath a Stokes wave. Communications on Pure and Applied Mathematics, 2010, 63, 533-557.                                                                                    | 1.2 | 69        |
| 70 | On Nagumo's theorem. Proceedings of the Japan Academy Series A: Mathematical Sciences, 2010, 86, .                                                                                    | 0.3 | 20        |
| 71 | Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity, 2010, 23, 2559-2575.                                                                                  | 0.6 | 114       |
| 72 | Trochoidal Solutions to the Incompressible Two-Dimensional Euler Equations. Journal of<br>Mathematical Fluid Mechanics, 2010, 12, 181-201.                                            | 0.4 | 7         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dynamics Research, 2010, 42, 038901.                                   | 0.6 | 4         |
| 74 | On the inviscid Proudman-Johnson equation. Proceedings of the Japan Academy Series A: Mathematical Sciences, 2009, 85, .                                                               | 0.3 | 14        |
| 75 | Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves.<br>Europhysics Letters, 2009, 86, 29001.                                                   | 0.7 | 36        |
| 76 | The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations. Archive for<br>Rational Mechanics and Analysis, 2009, 192, 165-186.                                 | 1.1 | 765       |
| 77 | On the relevance of soliton theory to tsunami modelling. Wave Motion, 2009, 46, 420-426.                                                                                               | 1.0 | 26        |
| 78 | On the particle paths in solitary water waves. Quarterly of Applied Mathematics, 2009, 68, 81-90.                                                                                      | 0.5 | 21        |
| 79 | Solitons and Tsunamis. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 65-68.                                                                       | 0.7 | 25        |
| 80 | On the propagation of tsunami waves, with emphasis on the tsunami of 2004. Discrete and Continuous<br>Dynamical Systems - Series B, 2009, 12, 525-537.                                 | 0.5 | 4         |
| 81 | Particle Trajectories in Linear Water Waves. Journal of Mathematical Fluid Mechanics, 2008, 10, 1-18.                                                                                  | 0.4 | 84        |
| 82 | Nearly-Hamiltonian Structure for Water Waves with Constant Vorticity. Journal of Mathematical Fluid Mechanics, 2008, 10, 224-237.                                                      | 0.4 | 33        |
| 83 | On an integrable two-component Camassa–Holm shallow water system. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 2008, 372, 7129-7132.                        | 0.9 | 364       |
| 84 | Particle trajectories in linear deep-water waves. Nonlinear Analysis: Real World Applications, 2008, 9,<br>1336-1344.                                                                  | 0.9 | 47        |
| 85 | Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dynamics Research, 2008, 40, 175-211.                                  | 0.6 | 100       |
| 86 | On the Non-Dimensionalisation, Scaling and Resulting Interpretation of the Classical Governing Equations for Water Waves. Journal of Nonlinear Mathematical Physics, 2008, 15, 58.     | 0.8 | 38        |
| 87 | Particle trajectories in solitary water waves. Bulletin of the American Mathematical Society, 2007, 44, 423-432.                                                                       | 0.8 | 390       |
| 88 | GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION. Analysis and Applications, 2007, 05, 1-27.                                                                                  | 1.2 | 400       |
| 89 | Generalized Fourier transform for the Camassa–Holm hierarchy. Inverse Problems, 2007, 23, 1565-1597                                                                                    | 1.0 | 33        |
| 90 | Introduction: some recent developments of nonlinear water wave theory. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2195-2201. | 1.6 | 5         |

| #   | Article                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Rotational steady water waves near stagnation. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2007, 365, 2227-2239. | 1.6 | 48        |
| 92  | Symmetry of steady periodic gravity water waves with vorticity. Duke Mathematical Journal, 2007, 140,                                                          | 0.8 | 137       |
| 93  | Stability properties of steady water waves with vorticity. Communications on Pure and Applied Mathematics, 2007, 60, 911-950.                                  | 1.2 | 73        |
| 94  | Global Conservative Solutions of the Camassa–Holm Equation. Archive for Rational Mechanics and Analysis, 2007, 183, 215-239.                                   | 1.1 | 652       |
| 95  | On geodesic exponential maps of the Virasoro group. Annals of Global Analysis and Geometry, 2007, 31, 155-180.                                                 | 0.3 | 127       |
| 96  | THE CAMASSA-HOLM EQUATION AS A GEODESIC FLOW FOR THE H $\sup$ 1 $\langle$ sup $2$ RIGHT-INVARIANT METRIC. , 2007, , .                                          |     | 3         |
| 97  | Solitons from the Lagrangian perspective. Discrete and Continuous Dynamical Systems, 2007, 19, 469-481.                                                        | 0.5 | 5         |
| 98  | Breaking Water Waves. , 2006, , 383-386.                                                                                                                       |     | 4         |
| 99  | Inverse scattering transform for the Camassa–Holm equation. Inverse Problems, 2006, 22, 2197-2207.                                                             | 1.0 | 308       |
| 100 | Variational formulations for steady water waves with vorticity. Journal of Fluid Mechanics, 2006, 548, 151.                                                    | 1.4 | 87        |
| 101 | Integrability of invariant metrics on the Virasoro group. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 75-80.               | 0.9 | 12        |
| 102 | Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation. Letters in<br>Mathematical Physics, 2006, 76, 93-108.                              | 0.5 | 29        |
| 103 | Integrability of Invariant Metrics on the Diffeomorphism Group of the Circle. Journal of Nonlinear Science, 2006, 16, 109-122.                                 | 1.0 | 61        |
| 104 | Global existence for fully parabolic boundary value problems. Nonlinear Differential Equations and Applications, 2006, 13, 91-118.                             | 0.4 | 14        |
| 105 | The trajectories of particles in Stokes waves. Inventiones Mathematicae, 2006, 166, 523-535.                                                                   | 1.3 | 633       |
| 106 | Modelling tsunamis. Journal of Physics A, 2006, 39, L215-L217.                                                                                                 | 1.6 | 20        |
| 107 | Global existence for parabolic systems by Lyapunov functions. Nonlinear Differential Equations and Applications, 2005, 12, 383-389.                            | 0.4 | 3         |
| 108 | On the existence of positive solutions of second order differential equations. Annali Di Matematica<br>Pura Ed Applicata, 2005, 184, 131-138.                  | 0.5 | 58        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Finite propagation speed for the Camassa–Holm equation. Journal of Mathematical Physics, 2005, 46, 023506.                                                                    | 0.5 | 125       |
| 110 | Global Solutions of the HunterSaxton Equation. SIAM Journal on Mathematical Analysis, 2005, 37, 996-1026.                                                                     | 0.9 | 126       |
| 111 | A Hamiltonian Formulation for Free Surface Water Waves with Non-Vanishing Vorticity. Journal of<br>Nonlinear Mathematical Physics, 2005, 12, 202.                             | 0.8 | 4         |
| 112 | WAVE-CURRENT INTERACTIONS., 2005, , .                                                                                                                                         |     | 19        |
| 113 | Comment on "Steep Sharp-Crested Gravity Waves on Deep Water― Physical Review Letters, 2004, 93,<br>069402; author reply 069403.                                               | 2.9 | 6         |
| 114 | Symmetry of steady deep-water waves with vorticity. European Journal of Applied Mathematics, 2004, 15, 755-768.                                                               | 1.4 | 90        |
| 115 | Exact steady periodic water waves with vorticity. Communications on Pure and Applied Mathematics, 2004, 57, 481-527.                                                          | 1.2 | 354       |
| 116 | Global solutions for quasilinear parabolic systems. Journal of Differential Equations, 2004, 197, 73-84.                                                                      | 1.1 | 27        |
| 117 | Symmetry of steady periodic surface water waves with vorticity. Journal of Fluid Mechanics, 2004, 498, 171-181.                                                               | 1.4 | 159       |
| 118 | Geodesic flow on the diffeomorphism group of the circle. Commentarii Mathematici Helvetici, 2003,<br>78, 787-804.                                                             | 0.4 | 292       |
| 119 | On the inverse scattering approach for an integrable shallow water wave equation. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2003, 308, 432-436. | 0.9 | 16        |
| 120 | On the Inverse Scattering Approach to the Camassa-Holm Equation. Journal of Nonlinear<br>Mathematical Physics, 2003, 10, 252.                                                 | 0.8 | 33        |
| 121 | Hk Metrics on the Diffeomorphism Group of the Circle. Journal of Nonlinear Mathematical Physics, 2003, 10, 424.                                                               | 0.8 | 4         |
| 122 | On the geometric approach to the motion of inertial mechanical systems. Journal of Physics A, 2002, 35, R51-R79.                                                              | 1.6 | 161       |
| 123 | Global solutions for quasilinear parabolic problems. Journal of Evolution Equations, 2002, 2, 97-111.                                                                         | 0.6 | 40        |
| 124 | Stability of the Camassa-Holm solitons. Journal of Nonlinear Science, 2002, 12, 415-422.                                                                                      | 1.0 | 296       |
| 125 | Exact periodic traveling water waves with vorticity. Comptes Rendus Mathematique, 2002, 335, 797-800.                                                                         | 0.1 | 35        |
| 126 | On the scattering problem for the Camassa-Holm equation. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2001, 457, 953-970.          | 1.0 | 528       |

1

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Edge waves along a sloping beach. Journal of Physics A, 2001, 34, 9723-9731.                                                                                        | 1.6 | 148       |
| 128 | Least Action Principle for an Integrable Shallow Water Equation. Journal of Nonlinear Mathematical<br>Physics, 2001, 8, 471.                                        | 0.8 | 6         |
| 129 | Orbital stability of solitary waves for a shallow water equation. Physica D: Nonlinear Phenomena, 2001, 157, 75-89.                                                 | 1.3 | 137       |
| 130 | A Lagrangian approximation to the water-wave problem. Applied Mathematics Letters, 2001, 14, 789-795.                                                               | 1.5 | 11        |
| 131 | The Construction of an Evolution System in the Hyperbolic Case and Applications. Mathematische Nachrichten, 2001, 224, 49-73.                                       | 0.4 | 4         |
| 132 | On the deep water wave motion. Journal of Physics A, 2001, 34, 1405-1417.                                                                                           | 1.6 | 173       |
| 133 | A NOTE ON A SECOND-ORDER NONLINEAR DIFFERENTIAL SYSTEM. Glasgow Mathematical Journal, 2000, 42, 195-199.                                                            | 0.2 | 10        |
| 134 | Stability of peakons. , 2000, 53, 603-610.                                                                                                                          |     | 737       |
| 135 | Positive solutions of quasilinear elliptic equations in two-dimensional exterior domains. Nonlinear<br>Analysis: Theory, Methods & Applications, 2000, 42, 243-250. | 0.6 | 19        |
| 136 | Stability of a class of solitary waves in compressible elastic rods. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 2000, 270, 140-148.    | 0.9 | 169       |
| 137 | Global Weak Solutions for a Shallow Water Equation. Communications in Mathematical Physics, 2000, 211, 45-61.                                                       | 1.0 | 401       |
| 138 | On the Blow-Up of Solutions of a Periodic Shallow Water Equation. Journal of Nonlinear Science, 2000, 10, 391-399.                                                  | 1.0 | 93        |
| 139 | On the blow-up rate and the blow-up set of breaking waves for a shallow water equation.<br>Mathematische Zeitschrift, 2000, 233, 75-91.                             | 0.4 | 264       |
| 140 | Stability of peakons. , 2000, 53, 603.                                                                                                                              |     | 19        |
| 141 | Existence of permanent and breaking waves for a shallow water equation: a geometric approach.<br>Annales De L'Institut Fourier, 2000, 50, 321-362.                  | 0.2 | 686       |
| 142 | On an infinite interval boundary value problem. Annali Di Matematica Pura Ed Applicata, 1999, 176, 379-394.                                                         | 0.5 | 11        |
| 143 | A shallow water equation on the circle. , 1999, 52, 949-982.                                                                                                        |     | 521       |
|     |                                                                                                                                                                     |     |           |

A shallow water equation on the circle. , 1999, 52, 949.

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Quasi-periodicity with respect to time of spatially periodic finite-gap solutions of the Camassa-Holm equation. Bulletin Des Sciences Mathematiques, 1998, 122, 487-494.   | 0.5 | 16        |
| 146 | On the Inverse Spectral Problem for the Camassa–Holm Equation. Journal of Functional Analysis,<br>1998, 155, 352-363.                                                      | 0.7 | 195       |
| 147 | Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Communications on Pure and Applied Mathematics, 1998, 51, 475-504. | 1.2 | 535       |
| 148 | Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica, 1998, 181, 229-243.                                                                        | 1.4 | 1,082     |
| 149 | On the structure of a family of quasilinear equations arising in shallow water theory.<br>Mathematische Annalen, 1998, 312, 403-416.                                       | 0.7 | 40        |
| 150 | On the cauchy problem for a family of quasilinear hyperbolic equations. Communications in Partial<br>Differential Equations, 1998, 23, 1449-1458.                          | 1.0 | 23        |
| 151 | On the existence and uniqueness of solutions of McShane type stochastic differential equations.<br>Stochastic Analysis and Applications, 1998, 16, 217-229.                | 0.9 | 3         |
| 152 | On the pathwise uniqueness of solutions of stochastic differential equations. Stochastic Analysis and Applications, 1998, 16, 231-232.                                     | 0.9 | 1         |
| 153 | Global weak solutions for a shallow water equation. Indiana University Mathematics Journal, 1998, 47,<br>0-0.                                                              | 0.4 | 141       |
| 154 | A note on the uniqueness of solutions of ordinary differential equations. Applicable Analysis, 1997, 64, 271-285.                                                          | 0.6 | 8         |
| 155 | On a stability theorem of liapunov. Archiv Der Mathematik, 1997, 68, 297-299.                                                                                              | 0.3 | 2         |
| 156 | Positive solutions of Schrïį¼2dinger equations in two-dimensional exterior domains. Monatshefte Fur<br>Mathematik, 1997, 123, 121-126.                                     | 0.5 | 21        |
| 157 | On the Cauchy Problem for the Periodic Camassa–Holm Equation. Journal of Differential Equations, 1997, 141, 218-235.                                                       | 1.1 | 167       |
| 158 | On the Oscillation of Solutions of the Liénard Equation. Journal of Mathematical Analysis and Applications, 1997, 205, 207-215.                                            | 0.5 | 8         |
| 159 | NOTE: Monotone Iterative Technique for a Nonlinear Integral Equation. Journal of Mathematical<br>Analysis and Applications, 1997, 205, 280-283.                            | 0.5 | 6         |
| 160 | On the Spectral Problem for the Periodic Camassa–Holm Equation. Journal of Mathematical Analysis<br>and Applications, 1997, 210, 215-230.                                  | 0.5 | 32        |
| 161 | Positive Solutions of Quasilinear Elliptic Equations. Journal of Mathematical Analysis and Applications, 1997, 213, 334-339.                                               | 0.5 | 28        |
| 162 | On the existence and pathwise uniqueness of solutions of stochastic differential equations.<br>Stochastic and Stochastics Reports, 1996, 56, 227-239.                      | 0.6 | 6         |

| #   | Article                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Existence of positive solutions of quasilinear elliptic equations. Bulletin of the Australian<br>Mathematical Society, 1996, 54, 147-154.             | 0.3 | 21        |
| 164 | Topological Transversality: Application to an Integrodifferential Equation. Journal of Mathematical<br>Analysis and Applications, 1996, 197, 855-863. | 0.5 | 7         |
| 165 | A note on a boundary value problem. Nonlinear Analysis: Theory, Methods & Applications, 1996, 27, 13-16.                                              | 0.6 | 2         |
| 166 | Sur un problème aux limites de la théorie du transfert de masse et de chaleur. Annales Mathematiques<br>Blaise Pascal, 1996, 3, 63-66.                | 0.2 | 0         |
| 167 | On a Two-Point Boundary Value Problem. Journal of Mathematical Analysis and Applications, 1995, 193, 318-328.                                         | 0.5 | 10        |
| 168 | Global existence of solutions for perturbed differential equations. Annali Di Matematica Pura Ed<br>Applicata, 1995, 168, 237-299.                    | 0.5 | 59        |
| 169 | On the boundedness of solutions of nonlinear differential equations in Hilbert spaces. Annali<br>Dell'Universita Di Ferrara, 1995, 41, 1-4.           | 0.7 | 0         |
| 170 | Stability of Solution Sets of Differential Equations with Multivalued Right-Hand Side. Journal of<br>Differential Equations, 1994, 114, 243-252.      | 1.1 | 9         |
| 171 | On the unicity of solutions for the differential equationx (n)(t)=f(t, x). Rendiconti Del Circolo<br>Matematico Di Palermo, 1993, 42, 59-64.          | 0.6 | 8         |