Tesfaye Mengiste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1852412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Maize (Zea mays L.) BIK1-Like Receptor-Like Cytoplasmic Kinase Contributes to Disease Resistance. Plant Molecular Biology Reporter, 2022, 40, 28-42.	1.0	5
2	Regulation of plant immunity and growth by tomato receptorâ€like cytoplasmic kinase TRK1. New Phytologist, 2022, 233, 458-478.	3.5	11
3	Broad-spectrum fungal resistance in sorghum is conferred through the complex regulation of an immune receptor gene embedded in a natural antisense transcript. Plant Cell, 2022, 34, 1641-1665.	3.1	17
4	Improved pathogen and stress tolerance in tomato mutants of <scp>SET</scp> domain histone 3 lysine methyltransferases. New Phytologist, 2022, 235, 1957-1976.	3.5	10
5	Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. Theoretical and Applied Genetics, 2021, 134, 1167-1184.	1.8	20
6	Transcriptome analysis of early stages of sorghum grain mold disease reveals defense regulators and metabolic pathways associated with resistance. BMC Genomics, 2021, 22, 295.	1.2	9
7	The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nature Communications, 2021, 12, 2166.	5.8	47
8	Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Scientific Reports, 2020, 10, 13685.	1.6	11
9	A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits. Plant Genome, 2020, 13, e20055.	1.6	19
10	Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum. BMC Genomics, 2020, 21, 760.	1.2	20
11	Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE, 2020, 15, e0233783.	1.1	19
12	CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in <i>Arabidopsis</i> . New Phytologist, 2020, 228, 1573-1590.	3.5	50
13	A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits. Frontiers in Plant Science, 2019, 10, 691.	1.7	55
14	NPR1 Promotes Its Own and Target Gene Expression in Plant Defense by Recruiting CDK8. Plant Physiology, 2019, 181, 289-304.	2.3	84
15	Endosidin2-14 Targets the Exocyst Complex in Plants and Fungal Pathogens to Inhibit Exocytosis. Plant Physiology, 2019, 180, 1756-1770.	2.3	13
16	Identification of sorghum grain mold resistance loci through genome wide association mapping. Journal of Cereal Science, 2019, 85, 295-304.	1.8	33
17	Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proceedings of the United States of America, 2018, 115, E5400-E5409.	3.3	157
18	VIP1 and Its Homologs Are Not Required for Agrobacterium-Mediated Transformation, but Play a Role in Botrytis and Salt Stress Responses. Frontiers in Plant Science, 2018, 9, 749.	1.7	21

TESFAYE MENGISTE

#	Article	IF	CITATIONS
19	Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 Regulates Responses to Systemin, Necrotrophic Fungi, and Insect Herbivory. Plant Cell, 2018, 30, 2214-2229.	3.1	43
20	Mutation in sorghum <i>LOW GERMINATION STIMULANT 1</i> alters strigolactones and causes <i>Striga</i> resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4471-4476.	3.3	172
21	Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin. Plant Cell, 2016, 28, tpc.00105.2016.	3.1	63
22	Global regulation of plant immunity by histone lysine methyl transferases. Plant Cell, 2016, 28, tpc.00012.2016.	3.1	65
23	Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth. Molecules and Cells, 2015, 38, 40-50.	1.0	6
24	Limited Addition of the 6-Arm β1,2-linked N-Acetylglucosamine (GlcNAc) Residue Facilitates the Formation of the Largest N-Glycan in Plants. Journal of Biological Chemistry, 2015, 290, 16560-16572.	1.6	15
25	The <i>Arabidopsis</i> Myb transcription factor MTF1 is a unidirectional regulator of susceptibility to <i>Agrobacterium</i> . Plant Signaling and Behavior, 2014, 9, e28983.	1.2	2
26	MED18 interaction with distinct transcription factors regulates multiple plant functions. Nature Communications, 2014, 5, 3064.	5.8	133
27	CYCLIN-DEPENDENT KINASE8 Differentially Regulates Plant Immunity to Fungal Pathogens through Kinase-Dependent and -Independent Functions in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 4149-4170.	3.1	96
28	Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming. BMC Genomics, 2014, 15, 334.	1.2	66
29	Quiescent and Necrotrophic Lifestyle Choice During Postharvest Disease Development. Annual Review of Phytopathology, 2013, 51, 155-176.	3.5	207
30	Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens. Current Opinion in Plant Biology, 2013, 16, 505-512.	3.5	63
31	Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12114-12119.	3.3	148
32	Polyamines Attenuate Ethylene-Mediated Defense Responses to Abrogate Resistance to <i>Botrytis cinerea</i> in Tomato Â. Plant Physiology, 2012, 158, 1034-1045.	2.3	111
33	Plant Immunity to Necrotrophs. Annual Review of Phytopathology, 2012, 50, 267-294.	3.5	479
34	Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. Plant Journal, 2011, 66, 591-602.	2.8	56
35	The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. Plant Journal, 2011, 68, 480-494.	2.8	54
36	Biochemical and Genetic Requirements for Function of the Immune Response Regulator BOTRYTIS-INDUCED KINASE1 in Plant Growth, Ethylene Signaling, and PAMP-Triggered Immunity in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 2831-2849.	3.1	140

TESFAYE MENGISTE

#	Article	IF	CITATIONS
37	The Arabidopsis Mitochondria-Localized Pentatricopeptide Repeat Protein PGN Functions in Defense against Necrotrophic Fungi and Abiotic Stress Tolerance Â. Plant Physiology, 2011, 156, 2053-2068.	2.3	166
38	The Arabidopsis Botrytis Susceptible1 Interactor Defines a Subclass of RING E3 Ligases That Regulate Pathogen and Stress Responses. Plant Physiology, 2010, 154, 1766-1782.	2.3	95
39	Necrotroph Attacks on Plants: Wanton Destruction or Covert Extortion?. The Arabidopsis Book, 2010, 8, e0136.	0.5	220
40	Receptor-like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector. Cell Host and Microbe, 2010, 7, 290-301.	5.1	713
41	The <i>Arabidopsis</i> ATAF1, a NAC Transcription Factor, Is a Negative Regulator of Defense Responses Against Necrotrophic Fungal and Bacterial Pathogens. Molecular Plant-Microbe Interactions, 2009, 22, 1227-1238.	1.4	204
42	HISTONE MONOUBIQUITINATION1 Interacts with a Subunit of the Mediator Complex and Regulates Defense against Necrotrophic Fungal Pathogens in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1000-1019.	3.1	232
43	Crosstalk between biotic and abiotic stress responses in tomato is mediated by the <i>AIM1</i> transcription factor. Plant Journal, 2009, 58, 347-360.	2.8	165
44	The Arabidopsis <i>RESURRECTION1</i> Gene Regulates a Novel Antagonistic Interaction in Plant Defense to Biotrophs and Necrotrophs. Plant Physiology, 2009, 151, 290-305.	2.3	56
45	Chapter 11 Unexpected Turns and Twists in Structure/Function of PR-Proteins that Connect Energy Metabolism and Immunity. Advances in Botanical Research, 2009, 51, 439-489.	0.5	18
46	Mechanisms of Induced Resistance Against B. cinerea. , 2009, , 13-30.		6
47	Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory. Plant Cell, 2008, 20, 1964-1983.	3.1	146
48	The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control. Current Biology, 2007, 17, 1116-1122.	1.8	356
49	Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal, 2006, 48, 592-605.	2.8	804
50	Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response toBotrytisinfection. Plant Journal, 2006, 48, 28-44.	2.8	259
51	Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant Journal, 2006, 49, 79-90.	2.8	271
52	The Membrane-Anchored BOTRYTIS-INDUCED KINASE1 Plays Distinct Roles in Arabidopsis Resistance to Necrotrophic and Biotrophic Pathogens. Plant Cell, 2005, 18, 257-273.	3.1	381
53	The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Plant Journal, 2004, 40, 558-574.	2.8	86
54	The BOTRYTIS SUSCEPTIBLE1 Gene Encodes an R2R3MYB Transcription Factor Protein That Is Required for Biotic and Abiotic Stress Responses in Arabidopsis, Plant Cell, 2003, 15, 2551-2565	3.1	495

#	Article	IF	CITATIONS
55	High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 1' promoter. Plant Journal, 1997, 12, 945-948.	2.8	32
56	Evaluation of selected Ethiopian sorghum genotypes for resistance to anthracnose. European Journal of Plant Pathology, 0, , 1.	0.8	1