Geoffrey E Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1851784/publications.pdf Version: 2024-02-01

CEOEEDEV E HILL

#	Article	IF	CITATIONS
1	No evidence that carotenoid pigments boost either immune or antioxidant defenses in a songbird. Nature Communications, 2018, 9, 491.	12.8	1,639
2	Plumage coloration is a sexually selected indicator of male quality. Nature, 1991, 350, 337-339.	27.8	767
3	The biology of color. Science, 2017, 357, .	12.6	509
4	Female house finches prefer colourful males: sexual selection for a condition-dependent trait. Animal Behaviour, 1990, 40, 563-572.	1.9	440
5	Choosing mates: good genes versus genes that are a good fit. Trends in Ecology and Evolution, 2004, 19, 554-559.	8.7	373
6	Proximate Basis of Variation in Carotenoid Pigmentation in Male House Finches. Auk, 1992, 109, 1-12.	1.4	311
7	Condition-dependent traits as signals of the functionality of vital cellular processes. Ecology Letters, 2011, 14, 625-634.	6.4	294
8	Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1525-1531.	2.6	283
9	Energetic constraints on expression of carotenoid-based plumage coloration. Journal of Avian Biology, 2000, 31, 559-566.	1.2	244
10	Dietary carotenoids predict plumage coloration in wild house finches. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1119-1124.	2.6	237
11	Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based coloration. Biological Journal of the Linnean Society, 2000, 69, 153-172.	1.6	227
12	Structurally based plumage coloration is an honest signal of quality in male blue grosbeaks. Behavioral Ecology, 2000, 11, 202-209.	2.2	215
13	Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. Journal of Avian Biology, 2003, 34, 345-349.	1.2	215
14	Carotenoids need structural colours to shine. Biology Letters, 2005, 1, 121-124.	2.3	211
15	Sex-Biased Hatching Order and Adaptive Population Divergence in a Passerine Bird. Science, 2002, 295, 316-318.	12.6	210
16	Condition–dependent variation in the blue–ultraviolet coloration of a structurally based plumage ornament. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 771-777.	2.6	205
17	Avian Sexual Dichromatism in Relation to Phylogeny and Ecology. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 27-49.	8.3	205
18	Structural and melanin coloration indicate parental effort and reproductive success in male eastern bluebirds. Behavioral Ecology, 2003, 14, 855-861.	2.2	200

#	Article	IF	CITATIONS
19	Genetic Basis for Red Coloration in Birds. Current Biology, 2016, 26, 1427-1434.	3.9	192
20	Geographic variation in male ornamentation and female mate preference in the house finch: a comparative test of models of sexual selection. Behavioral Ecology, 1994, 5, 64-73.	2.2	190
21	Nanostructure predicts intraspecific variation in ultraviolet–blue plumage colour. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1455-1460.	2.6	174
22	SPECIES DIVERGENCE IN SEXUALLY SELECTED TRAITS: INCREASE IN SONG ELABORATION IS RELATED TO DECREASE IN PLUMAGE ORNAMENTATION IN FINCHES. Evolution; International Journal of Organic Evolution, 2002, 56, 412-419.	2.3	162
23	Melanin–based plumage coloration in the house finch is unaffected by coccidial infection. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1105-1109.	2.6	151
24	Redness as a measure of the production cost of ornamental coloration. Ethology Ecology and Evolution, 1996, 8, 157-175.	1.4	150
25	Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum. PLoS Genetics, 2012, 8, e1002511.	3.5	145
26	The Vitamin A–Redox Hypothesis: A Biochemical Basis for Honest Signaling via Carotenoid Pigmentation. American Naturalist, 2012, 180, E127-E150.	2.1	144
27	EVIDENCE FOR SEXUAL SELECTION ON STRUCTURAL PLUMAGE COLORATION IN FEMALE EASTERN BLUEBIRDS (SIALIA SIALIS). Evolution; International Journal of Organic Evolution, 2005, 59, 1819-1828.	2.3	143
28	The Influence of Carotenoid Acquisition and Utilization on the Maintenance of Speciesâ€Typical Plumage Pigmentation in Male American Goldfinches (Carduelis tristis) and Northern Cardinals (Cardinalis) Tj ETQq0 0 0 rg	gB I.‡ Overl	ock420 Tf 50
29	Sex, size, and plumage redness predict house finch survival in an epidemic. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 961-965.	2.6	140
30	Mitonuclear Ecology. Molecular Biology and Evolution, 2015, 32, 1917-1927.	8.9	138
31	EFFECTS OF COCCIDIAL AND MYCOPLASMAL INFECTIONS ON CAROTENOID-BASED PLUMAGE PIGMENTATION IN MALE HOUSE FINCHES. Auk, 2000, 117, 952.	1.4	137
32	Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nature Communications, 2018, 9, 73.	12.8	136
33	Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7866-7871.	7.1	132
34	Variable Effects of Yolk Androgens on Growth, Survival, and Immunity in Eastern Bluebird Nestlings. Physiological and Biochemical Zoology, 2005, 78, 570-578.	1.5	129
35	Geographic variation in the carotenoid plumage pigmentation of male house finches (Carpodacus) Tj ETQq1 1 0.:	784314 rg 1.6	gBT /Qverloci 128
36	Sexual selection and cuckoldry in a monogamous songbird: implications for sexual selection theory. Behavioral Ecology and Sociobiology, 1994, 35, 193-199.	1.4	127

#	Article	IF	CITATIONS
37	Plumage Color as a Composite Trait: Developmental and Functional Integration of Sexual Ornamentation. American Naturalist, 2001, 158, 221-235.	2.1	126
38	ls There an Immunological Cost to Carotenoidâ€Based Ornamental Coloration?. American Naturalist, 1999, 154, 589-595.	2.1	120
39	Mitonuclear coevolution as the genesis of speciation and the mitochondrial <scp>DNA</scp> barcode gap. Ecology and Evolution, 2016, 6, 5831-5842.	1.9	120
40	UV-blue structural coloration and competition for nestboxes in male eastern bluebirds. Animal Behaviour, 2005, 69, 67-72.	1.9	115
41	Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. Journal of Experimental Biology, 2006, 209, 380-390.	1.7	115
42	Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay(Cyanocitta stelleri). Journal of Experimental Biology, 2006, 209, 1245-1250.	1.7	113
43	Bacteria as an Agent for Change in Structural Plumage Color: Correlational and Experimental Evidence. American Naturalist, 2007, 169, S112-S121.	2.1	112
44	Effects of Coccidial and Mycoplasmal Infections on Carotenoid-Based Plumage Pigmentation in Male House Finches. Auk, 2000, 117, 952-963.	1.4	111
45	What maintains signal honesty in animal colour displays used in mate choice?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160343.	4.0	109
46	Effects of Forest Fragment Size, Nest Density, and Proximity to Edge on the Risk of Predation to Ground-Nesting Passerine Birds. Conservation Biology, 1998, 12, 986-994.	4.7	107
47	A condition dependent link between testosterone and disease resistance in the house finch. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2467-2472.	2.6	107
48	Ornamental Traits as Indicators of Environmental Health. BioScience, 1995, 45, 25-31.	4.9	105
49	Egg coloration is correlated with female condition in eastern bluebirds (Sialia sialis). Behavioral Ecology and Sociobiology, 2006, 59, 651-656.	1.4	105
50	High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5219-5224.	7.1	104
51	The effect of coccidial infection on iridescent plumage coloration in wild turkeys. Animal Behaviour, 2005, 69, 387-394.	1.9	102
52	MALE MATE CHOICE AND THE EVOLUTION OF FEMALE PLUMAGE COLORATION IN THE HOUSE FINCH. Evolution; International Journal of Organic Evolution, 1993, 47, 1515-1525.	2.3	99
53	Testosterone and the allocation of reproductive effort in male house finches (Carpodacus) Tj ETQq1 1 0.784314	f rgBT /Ove	erlggk 10 Tf 5
54	THE EVOLUTION OF SEXUAL DIMORPHISM IN THE HOUSE FINCH. I. POPULATION DIVERGENCE IN MORPHOLOGICAL COVARIANCE STRUCTURE. Evolution; International Journal of Organic Evolution, 2000, 54, 1784-1794.	2.3	98

#	Article	IF	CITATIONS
55	Delayed plumage maturation and delayed reproductive investment in birds. Biological Reviews, 2012, 87, 257-274.	10.4	96
56	Cellular Respiration: The Nexus of Stress, Condition, and Ornamentation. Integrative and Comparative Biology, 2014, 54, 645-657.	2.0	96
57	Carotenoid Pigments in Male House Finch Plumage in Relation to Age, Subspecies, and Ornamental Coloration. Auk, 2001, 118, 900-915.	1.4	94
58	The physiological costs of being colourful: nutritional control of carotenoid utilization in the American goldfinch, Carduelis tristis. Animal Behaviour, 2005, 69, 653-660.	1.9	93
59	Mitochondrial function, ornamentation, and immunocompetence. Biological Reviews, 2017, 92, 1459-1474.	10.4	93
60	Pairing success relative to male plumage redness and pigment symmetry in the house finch: temporal and geographic constancy. Behavioral Ecology, 1999, 10, 48-53.	2.2	92
61	Paternal care as a conditional strategy: distinct reproductive tactics associated with elaboration of plumage ornamentation in the house finch. Behavioral Ecology, 2002, 13, 591-597.	2.2	90
62	Assessing the fitness consequences of mitonuclear interactions in natural populations. Biological Reviews, 2019, 94, 1089-1104.	10.4	90
63	Male Mate Choice and the Evolution of Female Plumage Coloration in the House Finch. Evolution; International Journal of Organic Evolution, 1993, 47, 1515.	2.3	89
64	Microbial Diversity of Wild Bird Feathers Revealed throughCulture-Based and Culture-Independent Techniques. Microbial Ecology, 2005, 50, 40-47.	2.8	88
65	Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behavioral Ecology, 2003, 14, 909-916.	2.2	87
66	Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends in Ecology and Evolution, 2021, 36, 321-332.	8.7	87
67	AVIAN HOST PREFERENCE BY VECTORS OF EASTERN EQUINE ENCEPHALOMYELITIS VIRUS. American Journal of Tropical Medicine and Hygiene, 2003, 69, 641-647.	1.4	87
68	Carotenoid-based ornamentation and status signaling in the house finch. Behavioral Ecology, 2000, 11, 520-527.	2.2	86
69	Evolution of sex-biased maternal effects in birds: III. Adjustment of ovulation order can enable sex-specific allocation of hormones, carotenoids, and vitamins. Journal of Evolutionary Biology, 2006, 19, 1044-1057.	1.7	85
70	You Can't Judge a Pigment by its Color: Carotenoid and Melanin Content of Yellow and Brown Feathers in Swallows, Bluebirds, Penguins, and Domestic Chickens. Condor, 2004, 106, 390-395.	1.6	83
71	Trait elaboration via adaptive mate choice: sexual conflict in the evolution of signals of male quality. Ethology Ecology and Evolution, 1994, 6, 351-370.	1.4	82
72	Plumage redness predicts breeding onset and reproductive success in the House Finch: a validation of Darwin's theory. Journal of Avian Biology, 2001, 32, 90-94.	1.2	82

#	Article	IF	CITATIONS
73	YOU CAN'T JUDGE A PIGMENT BY ITS COLOR: CAROTENOID AND MELANIN CONTENT OF YELLOW AND BROWN FEATHERS IN SWALLOWS, BLUEBIRDS, PENGUINS, AND DOMESTIC CHICKENS. Condor, 2004, 106, 390.	1.6	79
74	Yolk Testosterone Stimulates Growth and Immunity in House Finch Chicks. Physiological and Biochemical Zoology, 2006, 79, 550-555.	1.5	79
75	The mitonuclear compatibility species concept. Auk, 2017, 134, 393-409.	1.4	78
76	Late spring arrival and dull nuptial plumage: aggression avoidance by yearling males?. Animal Behaviour, 1989, 37, 665-673.	1.9	76
77	Carotenoid access and intraspecific variation in plumage pigmentation in male American Goldfinches (Carduelis tristis) and Northern Cardinals (Cardinalis cardinalis). Functional Ecology, 2001, 15, 732-739.	3.6	75
78	RECONCILING ACTUAL AND INFERRED POPULATION HISTORIES IN THE HOUSE FINCH (CARPODACUS) TJ ETQq0 2852-2864.	0 0 rgBT 2.3	Overlock 10 75
79	An experimental test of the contributions and condition dependence of microstructure and carotenoids in yellow plumage coloration. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2985-2991.	2.6	73
80	Do museum specimens accurately represent wild birds? A case study of carotenoid, melanin, and structural colours in longâ€ŧailed manakins <i>Chiroxiphia linearis</i> . Journal of Avian Biology, 2009, 40, 146-156.	1.2	73
81	Is carotenoid ornamentation linked to the inner mitochondria membrane potential? A hypothesis for the maintenance of signal honesty. Biochimie, 2013, 95, 436-444.	2.6	73
82	Age, Plumage Brightness, Territory Quality, and Reproductive Success in the Black-Headed Grosbeak. Condor, 1988, 90, 379-388.	1.6	72
83	The Evolution of Signal Design in Manakin Plumage Ornaments. American Naturalist, 2007, 169, S62-S80.	2.1	71
84	A genetic mechanism for sexual dichromatism in birds. Science, 2020, 368, 1270-1274.	12.6	71
85	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. III. DEVELOPMENTAL BASIS. Evolution; International Journal of Organic Evolution, 2001, 55, 176-189.	2.3	70
86	The Function of Delayed Plumage Maturation in Male Black-Headed Grosbeaks. Auk, 1988, 105, 1-10.	1.4	69
87	An assessment of techniques to manipulate oxidative stress in animals. Functional Ecology, 2017, 31, 9-21.	3.6	69
88	Female choice for song characteristics in the house finch. Animal Behaviour, 2004, 67, 403-410.	1.9	68
89	House Finches Are What They Eat: A Reply to Hudon. Auk, 1994, 111, 221-225.	1.4	67
90	The effects of elevated testosterone on plumage hue in male House Finches. Journal of Avian Biology, 2001, 32, 153-158.	1.2	67

#	Article	IF	CITATIONS
91	Male eastern bluebirds trade future ornamentation for current reproductive investment. Biology Letters, 2005, 1, 208-211.	2.3	67
92	Mitonuclear Ecology. , 2019, , .		66
93	Carotenoid-based plumage coloration predicts resistance to a novel parasite in the house finch. Die Naturwissenschaften, 2005, 92, 30-34.	1.6	65
94	The mitonuclear compatibility hypothesis of sexual selection. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131314.	2.6	65
95	A simple and inexpensive chemical test for behavioral ecologists to determine the presence of carotenoid pigments in animal tissues. Behavioral Ecology and Sociobiology, 2005, 57, 391-397.	1.4	64
96	Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). Journal of the Royal Society Interface, 2006, 3, 777-786.	3.4	64
97	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. II. POPULATION DIVERGENCE IN RELATION TO LOCAL SELECTION. Evolution; International Journal of Organic Evolution, 2000, 54, 2134-2144.	2.3	63
98	Ornamental plumage coloration and condition are dependent on age in eastern bluebirdsSialia sialis. Journal of Avian Biology, 2005, 36, 428-435.	1.2	62
99	Plumage color as a dynamic trait: carotenoid pigmentation of male house finches (Carpodacus) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.0	F/Overlock 10
100	Do carotenoidâ€based ornaments entail resource tradeâ€offs? An evaluation of theory and data. Functional Ecology, 2018, 32, 1908-1920.	3.6	61
101	Yolk androgens vary inversely to maternal androgens in Eastern Bluebirds: an experimental study. Functional Ecology, 2006, 20, 449-456.	3.6	60
102	Do feather-degrading bacteria affect sexually selected plumage color?. Die Naturwissenschaften, 2009, 96, 123-128.	1.6	60
103	The proximate basis of inter- and intra-population variation in female plumage coloration in the House Finch. Canadian Journal of Zoology, 1993, 71, 619-627.	1.0	59
104	Fighting ability and motivation: determinants of dominance and contest strategies in females of a passerine bird. Animal Behaviour, 2007, 74, 1675-1681.	1.9	59
105	Female choice for genetic complementarity in birds: a review. Genetica, 2008, 134, 147-158.	1.1	59
106	Seasonal Variation in Circulating Carotenoid Pigments in the House Finch. Auk, 1995, 112, 1057-1061.	1.4	58
107	Differential Accumulation and Pigmenting Ability of Dietary Carotenoids in Colorful Finches. Physiological and Biochemical Zoology, 2004, 77, 484-491.	1.5	55
108	Testing the efficacy of a virtual realityâ€based simulation in enhancing users' knowledge, attitudes, and empathy relating to psychosis. Australian Journal of Psychology, 2018, 70, 57-65.	2.8	54

#	Article	IF	CITATIONS
109	Subadult Plumage in the House Finch and Tests of Models for the Evolution of Delayed Plumage Maturation. Auk, 1996, 113, 858-874.	1.4	52
110	Mosquito and Arbovirus Activity During 1997-2002 in a Wetland in Northeastern Mississippi. Journal of Medical Entomology, 2004, 41, 495-501.	1.8	52
111	Plumage redness signals mitochondrial function in the house finch. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191354.	2.6	52
112	The anatomical basis of sexual dichromatism in non-iridescent ultraviolet-blue structural coloration of feathers. Biological Journal of the Linnean Society, 2005, 84, 259-271.	1.6	50
113	Innate immunity and the evolution of resistance to an emerging infectious disease in a wild bird. Molecular Ecology, 2012, 21, 2628-2639.	3.9	50
114	Avian host preference by vectors of eastern equine encephalomyelitis virus. American Journal of Tropical Medicine and Hygiene, 2003, 69, 641-7.	1.4	50
115	Yolk androgen deposition as a compensatory strategy. Behavioral Ecology and Sociobiology, 2006, 60, 392-398.	1.4	49
116	Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD. Blood, 2016, 128, 794-804.	1.4	49
117	Yolk Antioxidants Vary with Male Attractiveness and Female Condition in the House Finch (Carpodacus mexicanus). Physiological and Biochemical Zoology, 2006, 79, 1098-1105.	1.5	48
118	Detrimental effects of carotenoid pigments: the dark side of bright coloration. Die Naturwissenschaften, 2010, 97, 637-644.	1.6	48
119	A Multi-Year Study of Mosquito Feeding Patterns on Avian Hosts in a Southeastern Focus of Eastern Equine Encephalitis Virus. American Journal of Tropical Medicine and Hygiene, 2011, 84, 718-726.	1.4	46
120	Extreme Competence: Keystone Hosts of Infections. Trends in Ecology and Evolution, 2019, 34, 303-314.	8.7	46
121	The effect of rearing environment on blue structural coloration of eastern bluebirds (Sialia sialis). Behavioral Ecology and Sociobiology, 2007, 61, 1839-1846.	1.4	45
122	Mitonuclear Compensatory Coevolution. Trends in Genetics, 2020, 36, 403-414.	6.7	45
123	Interaction between maternal effects: onset of incubation and offspring sex in two populations of a passerine bird. Oecologia, 2003, 135, 386-390.	2.0	43
124	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. V. MATERNAL EFFECTS. Evolution; International Journal of Organic Evolution, 2003, 57, 384-398.	2.3	43
125	The effect of mycoplasmosis on carotenoid plumage coloration in male house finches. Journal of Experimental Biology, 2004, 207, 2095-2099.	1.7	43
126	A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches. Journal of Experimental Biology, 2009, 212, 1225-1233.	1.7	43

#	Article	IF	CITATIONS
127	Evidence for sexual selection on structural plumage coloration in female eastern bluebirds (Sialia) Tj ETQq1 1 0.78	4314 rgBT 2.3	- <mark>/</mark> gverlock
128	Enhancing Bachman's Sparrow Habitat via Management of Red-Cockaded Woodpeckers. Journal of Wildlife Management, 1998, 62, 347.	1.8	41
129	Correlated changes in male plumage coloration and female mate choice in cardueline finches. Animal Behaviour, 2004, 67, 27-35.	1.9	40
130	Carotenoid Access, Nutritional Stress, and the Dewlap Color of Male Brown Anoles. Copeia, 2010, 2010, 239-246.	1.3	40
131	Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females. Evolutionary Biology, 2015, 42, 251-259.	1.1	40
132	<scp>SNP</scp> s across time and space: population genomic signatures of founder events and epizootics in the House Finch (<i>Haemorhous mexicanus</i>). Ecology and Evolution, 2016, 6, 7475-7489.	1.9	40
133	PLUMAGE BRIGHTNESS AND BREEDING-SEASON DOMINANCE IN THE HOUSE FINCH: A NEGATIVELY CORRELATED HANDICAP?. Condor, 2000, 102, 456.	1.6	40
134	SUSCEPTIBILITY OF WILD SONGBIRDS TO THE HOUSE FINCH STRAIN OF MYCOPLASMA GALLISEPTICUM. Journal of Wildlife Diseases, 2005, 41, 317-325.	0.8	39
135	Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression. Integrative and Comparative Biology, 2019, 59, 912-924.	2.0	39
136	Temporal variation in shedding of coccidial oocysts: implications for sexual-selection studies. Canadian Journal of Zoology, 1999, 77, 347-350.	1.0	38
137	CHARACTERIZATION OF THE MYCOPLASMAL CONJUNCTIVITIS EPIZOOTIC IN A HOUSE FINCH POPULATION IN THE SOUTHEASTERN USA. Journal of Wildlife Diseases, 2001, 37, 82-88.	0.8	38
138	Changes in Song Complexity Correspond to Periods of Female Fertility in Blue Grosbeaks (Guiraca) Tj ETQq0 0 0 r	gBT /Overla 1.1	ဝင္ပန္င 10 Tf 5(
139	House Finch (Haemorhous mexicanus). , 2012, , .		38
140	Effects of Coccidial and Mycoplasmal Infections on Carotenoid-Based Plumage Pigmentation in Male House Finches. Auk, 2000, 117, 952-963.	1.4	37
141	Condition-dependent sexual traits and social dominance in the house finch. Behavioral Ecology, 2004, 15, 779-784.	2.2	37
142	A dynamic transmission model of eastern equine encephalitis virus. Ecological Modelling, 2006, 192, 425-440.	2.5	37
143	The Number of Provisioning Visits by House Finches Predicts the Mass of Food Delivered. Condor, 2001, 103, 851.	1.6	36
144	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. IV. POPULATION DIVERGENCE IN ONTOGENY. Evolution; International Journal of Organic Evolution, 2001, 55, 2534-2549.	2.3	36

#	Article	IF	CITATIONS
145	Carotenoid Pigments in a Mutant Cardinal: Implications for the Genetic and Enzymatic Control Mechanisms of Carotenoid Metabolism in Birds. Condor, 2003, 105, 587-592.	1.6	36
146	A cDNA macroarray approach to parasiteâ€induced gene expression changes in a songbird host: genetic response of house finches to experimental infection by <i>Mycoplasma gallisepticum</i> . Molecular Ecology, 2006, 15, 1263-1273.	3.9	36
147	Evolution of sexâ€biased maternal effects in birds. IV. Intraâ€ovarian growth dynamics can link sex determination and sexâ€specific acquisition of resources. Journal of Evolutionary Biology, 2008, 21, 449-460.	1.7	36
148	Host Reproductive Phenology Drives Seasonal Patterns of Host Use in Mosquitoes. PLoS ONE, 2011, 6, e17681.	2.5	35
149	The function of distress calls given by tufted titmice (Parus bicolor): an experimental approach. Animal Behaviour, 1986, 34, 590-598.	1.9	33
150	Characterization of Mycoplasma gallisepticum Infection in Captive House Finches (Carpodacus) Tj ETQq0 0 0 rgB	T /Overloc 1.0	k 10 Tf 50 5
151	Female Mate Choice in Relation to Structural Plumage Coloration in Blue Grosbeaks. Condor, 2003, 105, 593-598.	1.6	33
152	Vector–Host Interactions in Avian Nests: Do Mosquitoes Prefer Nestlings over Adults?. American Journal of Tropical Medicine and Hygiene, 2010, 83, 395-399.	1.4	32
153	FIRST CASE OF MYCOPLASMA GALLISEPTICUM INFECTION IN THE WESTERN RANGE OF THE HOUSE FINCH (CARPODACUS MEXICANUS). Auk, 2003, 120, 528.	1.4	31
154	Blue structural coloration of male eastern bluebirdsSialia sialispredicts incubation provisioning to females. Journal of Avian Biology, 2005, 36, 488-493.	1.2	31
155	Experimental evidence for distinct costs of pathogenesis and immunity against a natural pathogen in a wild bird. Molecular Ecology, 2012, 21, 4787-4796.	3.9	31
156	SUSCEPTIBILITY OF A NAIÂ [·] VE POPULATION OF HOUSE FINCHES TO MYCOPLASMA GALLISEPTICUM. Journal of Wildlife Diseases, 2002, 38, 282-286.	0.8	30
157	FEMALE MATE CHOICE IN RELATION TO STRUCTURAL PLUMAGE COLORATION IN BLUE GROSBEAKS. Condor, 2003, 105, 593.	1.6	30
158	Evidence Suggesting that Ivory-billed Woodpeckers (Campephilus principalis) Exist in Florida. Avian Conservation and Ecology, 2006, 1, .	0.8	30
159	An experimental test of female choice relative to male structural coloration in eastern bluebirds. Behavioral Ecology and Sociobiology, 2007, 61, 623-630.	1.4	30
160	Genetic Basis of De Novo Appearance of Carotenoid Ornamentation in Bare Parts of Canaries. Molecular Biology and Evolution, 2020, 37, 1317-1328.	8.9	30
161	CAROTENOID PIGMENTS IN A MUTANT CARDINAL: IMPLICATIONS FOR THE GENETIC AND ENZYMATIC CONTROL MECHANISMS OF CAROTENOID METABOLISM IN BIRDS. Condor, 2003, 105, 587.	1.6	29

162 Environmental Regulation of Ornamental Coloration. , 2006, , 507-560.

#	Article	IF	CITATIONS
163	Population consequences of maternal effects: sex-bias in egg-laying order facilitates divergence in sexual dimorphism between bird populations. Journal of Evolutionary Biology, 2002, 15, 997-1003.	1.7	28
164	Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp.). Journal of the Royal Society Interface, 2006, 3, 527-532.	3.4	28
165	Estimation of Dispersal Distances of Culex erraticus in a Focus of Eastern Equine Encephalitis Virus in the Southeastern United States. Journal of Medical Entomology, 2010, 47, 977-986.	1.8	28
166	On the bioconversion of dietary carotenoids to astaxanthin in the marine copepod, Tigriopus californicus. Journal of Plankton Research, 2018, 40, 142-150.	1.8	27
167	Recent Change in the Winter Distribution of Rufous Hummingbirds. Auk, 1998, 115, 240-245.	1.4	26
168	Plumage Redness and Pigment Symmetry in the House Finch. Journal of Avian Biology, 1998, 29, 86.	1.2	26
169	PARENTAL CARE IN RELATION TO BROOD SIZE IN THE HOUSE FINCH. Journal of Field Ornithology, 2001, 72, 412-418.	0.5	26
170	Feeding decisions of eastern bluebirds are situationally influenced by fledgling plumage color. Behavioral Ecology, 2010, 21, 456-464.	2.2	26
171	Interspecific Variation in Plasma Hue in Relation to Carotenoid Plumage Pigmentation. Auk, 1995, 112, 1054-1057.	1.4	25
172	A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Molecular Phylogenetics and Evolution, 2010, 55, 733-737.	2.7	25
173	Testis Mass and Subadult Plumage in Black-Headed Grosbeaks. Condor, 1994, 96, 626-630.	1.6	24
174	Habitat Requirements of Henslow's Sparrows Wintering in Silvicultural Lands of the Gulf Coastal Plain. Auk, 1999, 116, 109-115.	1.4	24
175	High Concentrations of Ketocarotenoids in Hepatic Mitochondria of <i>Haemorhous mexicanus</i> . Physiological and Biochemical Zoology, 2015, 88, 444-450.	1.5	24
176	Evolution of both host resistance and tolerance to an emerging bacterial pathogen. Evolution Letters, 2019, 3, 544-554.	3.3	24
177	Sexual selection and cuckoldry in a monogamous songbird: implications for sexual selection theory. Behavioral Ecology and Sociobiology, 1994, 35, 193-199.	1.4	24
178	Plumage Brightness and Breeding-Season Dominance in the House Finch: A Negatively Correlated Handicap?. Condor, 2000, 102, 456-461.	1.6	23
179	Climate change and the decline of a once common bird. Ecology and Evolution, 2012, 2, 370-378.	1.9	23
180	Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16927-16932.	7.1	23

#	Article	IF	CITATIONS
181	FEATHERS AT A FINE SCALE. Auk, 2004, 121, 652.	1.4	22
182	Diversity of birds in eastern <scp>N</scp> orth <scp>A</scp> merica shifts north with global warming. Ecology and Evolution, 2012, 2, 3052-3060.	1.9	22
183	Evolutionary innovation and diversification of carotenoidâ€based pigmentation in finches. Evolution; International Journal of Organic Evolution, 2016, 70, 2839-2852.	2.3	22
184	Testing reversed sexual dominance from an ontogenetic perspective: juvenile female House Finches Carpodacus mexicanus are dominant to juvenile males. Ibis, 2002, 144, 139-142.	1.9	21
185	Developing GIS-based eastern equine encephalitis vector-host models in Tuskegee, Alabama. International Journal of Health Geographics, 2010, 9, 12.	2.5	21
186	Effect of feather abrasion on structural coloration in male eastern bluebirds Sialia sialis. Journal of Avian Biology, 2011, 42, 514-521.	1.2	21
187	Sex linkage of nuclear-encoded mitochondrial genes. Heredity, 2014, 112, 469-470.	2.6	21
188	Mitonuclear Mate Choice: A Missing Component of Sexual Selection Theory?. BioEssays, 2018, 40, 1700191.	2.5	21
189	Rapid Antagonistic Coevolution in an Emerging Pathogen and Its Vertebrate Host. Current Biology, 2018, 28, 2978-2983.e5.	3.9	21
190	Evolutionary inference from patterns of female preference and male display. Behavioral Ecology, 1995, 6, 350-351.	2.2	20
191	Male House Finches with Elaborate Songs have Higher Reproductive Performance. Ethology, 2006, 112, 174-180.	1.1	20
192	Sex-specific costs of reproduction in Eastern Bluebirds Sialia sialis. Ibis, 2007, 150, 32-39.	1.9	20
193	Sex-biased parental investment is correlated with mate ornamentation in eastern bluebirds. Animal Behaviour, 2010, 79, 727-734.	1.9	20
194	Predicting Occupancy of Wintering Migratory Birds : Is Microhabitat Information Necessary?. Condor, 2012, 114, 482-490.	1.6	20
195	12. Environmental Regulation of Ornamental Coloration. , 2006, , 507-560.		20
196	The Number of Provisioning Visits by House Finches Predicts the Mass of Food Delivered. Condor, 2001, 103, 851-855.	1.6	19
197	Detection of <i>Mycoplasma gallisepticum</i> in House Finches (<i>Haemorhous mexicanus</i>) from Arizona. Avian Diseases, 2018, 62, 14-17.	1.0	19
198	Testing the resource tradeoff hypothesis for carotenoid-based signal honesty using genetic variants of the domestic canary. Journal of Experimental Biology, 2019, 222, .	1.7	18

#	Article	IF	CITATIONS
199	Dynamic versus static occupancy: How stable are habitat associations through a breeding season?. Ecosphere, 2012, 3, 1-13.	2.2	17
200	The Importance of Carotenoid Dose in Supplementation Studies with Songbirds. Physiological and Biochemical Zoology, 2016, 89, 61-71.	1.5	17
201	An <i>in vivo</i> test of the biologically relevant roles of carotenoids as antioxidants in animals. Journal of Experimental Biology, 2018, 221, .	1.7	17
202	Beyond the Powerhouse: Integrating Mitonuclear Evolution, Physiology, and Theory in Comparative Biology. Integrative and Comparative Biology, 2019, 59, 856-863.	2.0	17
203	Induced homosexual behaviour in male house finches (Carpodacus mexicanus): the "Prisoner Effect― Ethology Ecology and Evolution, 1999, 11, 197-201.	1.4	16
204	Experimental evidence for stabilizing selection on virulence in a bacterial pathogen. Evolution Letters, 2020, 4, 491-501.	3.3	16
205	Birds rarely hybridize: A citizen science approach to estimating rates of hybridization in the wild*. Evolution; International Journal of Organic Evolution, 2020, 74, 1216-1223.	2.3	16
206	Risk of Exposure to Eastern Equine Encephalomyelitis Virus Increases with the Density of Northern Cardinals. PLoS ONE, 2013, 8, e57879.	2.5	15
207	Actual or Perceived Abundance? Interpreting Annual Survey Data in the Face of Changing Phenologies. Condor, 2011, 113, 490-500.	1.6	14
208	Effects of diet on plumage coloration and carotenoid deposition in red and yellow domestic canaries (Serinus canaria). Wilson Journal of Ornithology, 2016, 128, 328.	0.2	14
209	Copper exposure reduces production of red carotenoids in a marine copepod. Ecological Indicators, 2016, 70, 393-400.	6.3	14
210	A Review and Assessment of the Shared-Pathway Hypothesis for the Maintenance of Signal Honesty in Red Ketocarotenoid-Based Coloration. Integrative and Comparative Biology, 2021, 61, 1811-1826.	2.0	14
211	Nest mites (<i>Pellonyssus reedi</i>) and the reproductive biology of the house finch (<i>Carpodacus) Tj ETQq1</i>	1 0.78431 1.7	4 ₁ gBT /Over
212	Effects of Mycoplasma gallisepticum on Reproductive Success in House Finches. Avian Diseases, 2004, 48, 879-885.	1.0	13
213	Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biological Reviews, 2018, 93, 1387-1398.	10.4	13
214	A test of sensory bias for long tails in the house finch. Animal Behaviour, 1998, 56, 71-78.	1.9	12
215	Melanin, Nutrition, and the Lion's Mane. Science, 2003, 299, 660b-660.	12.6	12
216	Effects of breeding density and plumage coloration on mate guarding and cuckoldry in blue grosbeaks (Passerina caerulea). Canadian Journal of Zoology, 2005, 83, 1143-1148.	1.0	12

#	Article	IF	CITATIONS
217	A field test of female mate preference for male plumage coloration in eastern bluebirds. Animal Behaviour, 2009, 78, 879-885.	1.9	12
218	Developing Models for the Forage Ratios of Culiseta melanura and Culex erraticus Using Species Characteristics for Avian Hosts. Journal of Medical Entomology, 2012, 49, 378-387.	1.8	12
219	A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines. BMC Genomics, 2014, 15, 305.	2.8	12
220	An Ecologist's Guide to Mitochondrial DNA Mutations and Senescence. Integrative and Comparative Biology, 2019, 59, 970-982.	2.0	12
221	Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecology and Evolution, 2020, 10, 9048-9059.	1.9	12
222	THE EVOLUTION OF SEXUAL DIMORPHISM IN THE HOUSE FINCH. I. POPULATION DIVERGENCE IN MORPHOLOGICAL COVARIANCE STRUCTURE. Evolution; International Journal of Organic Evolution, 2000, 54, 1784.	2.3	11
223	Maintenance of a Captive Flock of House Finches Free of Infection by Mycoplasma gallisepticum. Avian Diseases, 2000, 44, 948.	1.0	11
224	A multiplex set of microsatellite markers for the scarlet rosefinch (Carpodacus erythrinus). Molecular Ecology Notes, 2007, 7, 1375-1378.	1.7	11
225	Do adult eastern bluebird, Sialia sialis, males recognize juvenile-specific traits?. Animal Behaviour, 2009, 77, 1267-1272.	1.9	11
226	Assessing Mosquito Feeding Patterns on Nestling and Brooding Adult Birds Using Microsatellite Markers. American Journal of Tropical Medicine and Hygiene, 2009, 81, 534-537.	1.4	11
227	Mate Attentiveness, Seasonal Timing of Breeding and Long-term Pair Bonding in the House Finch (Carpodacus mexicanus). Behaviour, 2004, 141, 1-13.	0.8	10
228	Use of Culture-Independent Methods to Compare Bacterial Assemblages on Feathers of Crested and Least Auklets (Aethia cristatella and Aethia pusilla) with Those of Passerines. Waterbirds, 2006, 29, 507-511.	0.3	10
229	Effects of species ecology and urbanization on accuracy of a cover-type model: A test using GAP analysis. Landscape and Urban Planning, 2012, 105, 417-424.	7.5	10
230	Changes in concentrations of circulating heat-shock proteins in House Finches in response to different environmental stressors. Journal of Field Ornithology, 2013, 84, 416-424.	0.5	9
231	Effect of Prenatal and Natal Administration of Testosterone on Production of Structurally Based Plumage Coloration. Physiological and Biochemical Zoology, 2013, 86, 323-332.	1.5	9
232	An experimental test of the role of structural blue and melanin-based chestnut coloration in aggressive contests in male eastern bluebirds. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	9
233	An experimental test of mate choice for red carotenoid coloration in the marine copepod <i>Tigriopus californicus</i> . Ethology, 2020, 126, 344-352.	1.1	9
234	Longleaf Pine Restoration: Implications for Landscape-Level Effects on Bird Communities in the Lower Gulf Coastal Plain. Southern Journal of Applied Forestry, 2003, 27, 107-121.	0.3	8

#	Article	IF	CITATIONS
235	EVIDENCE FOR SEXUAL SELECTION ON STRUCTURAL PLUMAGE COLORATION IN FEMALE EASTERN BLUEBIRDS (SIALIA SIALIS). Evolution; International Journal of Organic Evolution, 2005, 59, 1819.	2.3	8
236	The Effects of West Nile Virus on the Reproductive Success and Overwinter Survival of Eastern Bluebirds in Alabama. Vector-Borne and Zoonotic Diseases, 2010, 10, 159-163.	1.5	8
237	Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host. Infection and Immunity, 2018, 86, .	2.2	8
238	First Case of Mycoplasma Gallisepticum Infection in the Western Range of The House Finch (Carpodacus Mexicanus). Auk, 2003, 120, 528-530.	1.4	8
239	SPECIES DIVERGENCE IN SEXUALLY SELECTED TRAITS: INCREASE IN SONG ELABORATION IS RELATED TO DECREASE IN PLUMAGE ORNAMENTATION IN FINCHES. Evolution; International Journal of Organic Evolution, 2002, 56, 412.	2.3	7
240	Use of a gel documentation system to measure feather growth bars. Journal of Field Ornithology, 2003, 74, 125-128.	0.5	7
241	Carotenoid-based breast plumage colour, body condition and clutch size in red fodies (<i>Foudia) Tj ETQq1 1 0.7</i>	84314 rgE 1.1	3T ₄ Overlock
242	Influence of Hatch Order on Begging and Plumage Coloration of Nestling Eastern Bluebirds. Wilson Journal of Ornithology, 2011, 123, 772-778.	0.2	7
243	Is the juvenal plumage of altricial songbirds an honest signal of age? Evidence from a comparative study of thrushes (Passeriformes: Turdidae). Journal of Zoological Systematics and Evolutionary Research, 2013, 51, 64-71.	1.4	7
244	Seasonal use of habitat by shrub-breeding birds in a southeastern national forest. Wilson Journal of Ornithology, 2013, 125, 731-743.	0.2	7
245	Plumage color and pathogen-induced gene expression in a wild bird. Behavioral Ecology, 2015, 26, 1100-1110.	2.2	7
246	Predicting adult lifespan and lifetime reproductive success from early-life reproductive events. Marine Biology, 2020, 167, 1.	1.5	7
247	Chemical manipulation of mitochondrial function affects metabolism of red carotenoids in a marine copepod (<i>Tigriopus californicus</i>). Journal of Experimental Biology, 2022, 225, .	1.7	7
248	Using Public Land Cover Data to Determine Habitat Associations of Breeding Birds in Tuskegee National Forest, Alabama. Southern Journal of Applied Forestry, 2011, 35, 199-209.	0.3	6
249	Invasive Ants Alter Foraging and Parental Behaviors of a Native Bird. Ethology, 2012, 118, 858-866.	1.1	6
250	Prevalence of Blood Parasites in Eastern Versus Western House Finches: Are Eastern Birds Resistant to Infection?. EcoHealth, 2013, 10, 290-297.	2.0	6
251	Ketocarotenoid circulation, but not retinal carotenoid accumulation, is linked to eye disease status in a wild songbird. Archives of Biochemistry and Biophysics, 2013, 539, 156-162.	3.0	6
252	Stress, Condition, and Ornamentation. Integrative and Comparative Biology, 2014, 54, 533-538.	2.0	6

#	Article	IF	CITATIONS
253	RECONCILING ACTUAL AND INFERRED POPULATION HISTORIES IN THE HOUSE FINCH (CARPODACUS) Tj ETQq 1	1 0.78431	4 ₅ gBT /Ove
254	Invasive Fire Ants Reduce Reproductive Success and Alter the Reproductive Strategies of a Native Vertebrate Insectivore. PLoS ONE, 2011, 6, e22578.	2.5	5
255	Coccidial infection does not influence preening behavior in American goldfinches. Acta Ethologica, 2014, 17, 107-111.	0.9	5
256	Carotenoid coloration predicts escape performance in the House Finch (Haemorhous mexicanus). Auk, 2014, 131, 275-281.	1.4	5
257	Multiple differences in pathogen-host cell interactions following a bacterial host shift. Scientific Reports, 2020, 10, 6779.	3.3	5
258	Ultraviolet irradiation alters the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions in copepod myocytes. Mitochondrion, 2021, 56, 82-90.	3.4	5
259	Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease. Scientific Reports, 2021, 11, 8209.	3.3	5
260	Nest mites (<i>Pellonyssus reedi</i>) and the reproductive biology of the house finch (<i>Carpodacus) Tj ETQq0 (</i>	0 0 rgBT /C	Dverlock 10
261	Evidence for hybrid breakdown in production of red carotenoids in the marine invertebrate Tigriopus californicus. PLoS ONE, 2021, 16, e0259371.	2.5	5
262	Assessing mosquito feeding patterns on nestling and brooding adult birds using microsatellite markers. American Journal of Tropical Medicine and Hygiene, 2009, 81, 534-7.	1.4	5
263	Use of Forested Habitat by Breeding Birds in the Gulf Coastal Plain. Southern Journal of Applied Forestry, 1998, 22, 133-137.	0.3	4
264	Pox and Plumage Coloration in the House Finch: A Critique of Zahn and Rothstein. Auk, 2001, 118, 256-260.	1.4	4
265	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. III. DEVELOPMENTAL BASIS. Evolution; International Journal of Organic Evolution, 2001, 55, 176.	2.3	4
266	A Multi-Scale Analysis of Competition between the House Finch and House Sparrow in the Southeastern United States. Condor, 2011, 113, 462-468.	1.6	4
267	Primer design and transcript quantification of a highly multiplexed RTâ€PCR for a nonmodel avian species. Molecular Ecology Resources, 2012, 12, 116-122.	4.8	4
268	Rapid Evolution of Bright Monochromatism in the Domestic Atlantic Canary (Serinus canaria). Wilson Journal of Ornithology, 2015, 127, 615-621.	0.2	4
269	A response to Justen etÂal. 2020: Estimating hybridization rates in the wild: Easier said than done?. Evolution; International Journal of Organic Evolution, 2021, 75, 2145-2147.	2.3	4
270	Carotenoid Pigments in Male House Finch Plumage in Relation to Age, Subspecies, and Ornamental Coloration. Auk, 2001, 118, 900-915.	1.4	4

#	Article	IF	CITATIONS
271	Selection for reinforcement versus selection for signals of quality and attractiveness. Ideas in Ecology and Evolution, 0, 8, .	0.1	4
272	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. II. POPULATION DIVERGENCE IN RELATION TO LOCAL SELECTION. Evolution; International Journal of Organic Evolution, 2000, 54, 2134.	2.3	3
273	ECOLOGY: A Head Start for Some Redstarts. Science, 2004, 306, 2201-2202.	12.6	3
274	Hybrid speciation in birds, with special reference to Darwin's finches. Journal of Avian Biology, 2018, 49, e01879.	1.2	3
275	Effects of a Bacterial Infection on Mitochondrial Function and Oxidative Stress in a Songbird. Physiological and Biochemical Zoology, 2021, 94, 71-82.	1.5	3
276	Ecomorphs are not species: the case of locally adapted populations of red crossbills. Journal of Avian Biology, 2021, 52, .	1.2	3
277	A combination of red structural and pigmentary coloration in the eyespot of a copepod. Journal of the Royal Society Interface, 2022, 19, .	3.4	3
278	Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry. International Journal of Molecular Sciences, 2022, 23, 6230.	4.1	3
279	Adoption by a Territorial Passerine. Wilson Journal of Ornithology, 2009, 121, 830-834.	0.2	2
280	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. IV. POPULATION DIVERGENCE IN ONTOGENY. Evolution; International Journal of Organic Evolution, 2001, 55, 2534.	2.3	1
281	THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH. V. MATERNAL EFFECTS. Evolution; International Journal of Organic Evolution, 2003, 57, 384.	2.3	1
282	Developers, Quality Control and Download Volume in Open Source Software (OSS) Projects. Journal of Organizational and End User Computing, 2017, 29, 43-66.	2.9	1
283	Loss of Carotenoid Plumage Coloration Is Associated With Loss of Choice for Coloration in Domestic Canaries. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	1
284	The relative importance of various mating criteria in copepods. Journal of Plankton Research, 2020, 42, 19-30.	1.8	1
285	First Case of Mycoplasma gallisepticum Infection in the Western Range of the House Finch (Carpodacus mexicanus). Auk, 2003, 120, 528-530.	1.4	1
286	A response to estimating hybridization in the wild using community science data: A path forward. Evolution; International Journal of Organic Evolution, 2022, 76, 359-361.	2.3	1
287	Autoreactive T Cells Escaping Thymic Deletion in REL-B Deficient Mice Depend on Dendritic Cell-encoded REL-B for Control of Autoimmunity. Clinical Immunology, 2010, 135, S134-S135.	3.2	0
288	Blue structural coloration of male eastern bluebirds Sialia sialis predicts incubation provisioning to females. Journal of Avian Biology, 2005, .	1.2	0

#	Article	IF	CITATIONS
289	BIRKHEAD, Tim. <i>Bird sense: what it's like to be a bird.</i> Bloomsbury, London: 2012. Pp xii, 265; illustrated. Price £ 16.99 (hardback). ISBN 9781408820131 Archives of Natural History, 2013, 40, 372-373.	0.3	0

290 Feathers at a Fine Scale. Auk, 2004, 121, 652-655.

1.4

0