
Cesare Usai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1851358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5759-5764.	7.1	183
2	Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathologica, 2015, 130, 279-295.	7.7	160
3	Multi-photon excitation microscopy. BioMedical Engineering OnLine, 2006, 5, 36.	2.7	132
4	Extracellular NAD+Is an Agonist of the Human P2Y11Purinergic Receptor in Human Granulocytes. Journal of Biological Chemistry, 2006, 281, 31419-31429.	3.4	129
5	Abscisic Acid Is an Endogenous Stimulator of Insulin Release from Human Pancreatic Islets with Cyclic ADP Ribose as Second Messenger. Journal of Biological Chemistry, 2008, 283, 32188-32197.	3.4	129
6	Mesenchymal Stem Cells Shape Microglia Effector Functions Through the Release of CX3CL1. Stem Cells, 2012, 30, 2044-2053.	3.2	127
7	Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Laboratory Investigation, 2012, 92, 1140-1148.	3.7	123
8	The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14859-14864.	7.1	118
9	The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADPâ€ribose across membranes. FASEB Journal, 1998, 12, 1507-1520.	0.5	115
10	Expression of CD38 Increases Intracellular Calcium Concentration and Reduces Doubling Time in HeLa and 3T3 Cells. Journal of Biological Chemistry, 1998, 273, 8017-8024.	3.4	111
11	LANCL2 Is Necessary for Abscisic Acid Binding and Signaling in Human Granulocytes and in Rat Insulinoma Cells. Journal of Biological Chemistry, 2009, 284, 28045-28057.	3.4	107
12	Paracrine Roles of NAD+ and Cyclic ADP-ribose in Increasing Intracellular Calcium and Enhancing Cell Proliferation of 3T3 Fibroblasts. Journal of Biological Chemistry, 2001, 276, 21642-21648.	3.4	103
13	Ligandâ€induced internalization of CD38 results in intracellular Ca ²⁺ mobilization: role of NAD ⁺ transport across cell membranes. FASEB Journal, 1999, 13, 273-283.	0.5	100
14	A Self-restricted CD38-connexin 43 Cross-talk Affects NAD+ and Cyclic ADP-ribose Metabolism and Regulates Intracellular Calcium in 3T3 Fibroblasts. Journal of Biological Chemistry, 2001, 276, 48300-48308.	3.4	99
15	Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. Journal of Neurochemistry, 2006, 96, 656-668.	3.9	99
16	Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms. Scientific Reports, 2015, 5, 13856.	3.3	98
17	Bronchial Airway Epithelial Cell Damage Following Exposure to Cigarette Smoke Includes Disassembly of Tight Junction Components Mediated by the Extracellular Signal-Regulated Kinase 1/2 Pathway. Chest, 2009, 135, 1502-1512.	0.8	88
18	Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD Thorax 2009 64 968-975	5.6	79

#	Article	IF	CITATIONS
19	Abscisic Acid Released by Human Monocytes Activates Monocytes and Vascular Smooth Muscle Cell Responses Involved in Atherogenesis. Journal of Biological Chemistry, 2009, 284, 17808-17818.	3.4	74
20	Extracellular cyclic ADPâ€ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB Journal, 2000, 14, 680-690.	0.5	72
21	Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation. Scientific Reports, 2021, 11, 1740.	3.3	69
22	Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes. Biochemical Journal, 2006, 393, 697-704.	3.7	67
23	Abscisic Acid Activates the Murine Microglial Cell Line N9 through the Second Messenger Cyclic ADP-ribose. Journal of Biological Chemistry, 2009, 284, 14777-14787.	3.4	64
24	Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2011, 116, 1028-1042.	3.9	63
25	P2X7-mediated Increased Intracellular Calcium Causes Functional Derangement in Schwann Cells from Rats with CMT1A Neuropathy. Journal of Biological Chemistry, 2009, 284, 23146-23158.	3.4	60
26	Cyclic ADP-Ribose-Mediated Expansion and Stimulation of Human Mesenchymal Stem Cells by the Plant Hormone Abscisic Acid. Stem Cells, 2008, 26, 2855-2864.	3.2	59
27	Photobleaching. , 2006, , 690-702.		57
28	Pathways of Cadmium Influx in Mammalian Neurons. Journal of Neurochemistry, 2008, 72, 2154-2161.	3.9	57
29	Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells. Biochemical Journal, 2003, 375, 395-403.	3.7	56
30	NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium, 2008, 43, 344-355.	2.4	55
31	Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum. Biochemical Journal, 1996, 320, 665-671.	3.7	53
32	Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Neurochemistry International, 2008, 52, 103-112.	3.8	51
33	Presynaptic mGlu7 receptors control GABA release in mouse hippocampus. Neuropharmacology, 2013, 66, 215-224.	4.1	51
34	Regulation of Human Mesenchymal Stem Cell Functions by an Autocrine Loop Involving NAD ⁺ Release and P2Y11-Mediated Signaling. Stem Cells and Development, 2011, 20, 1183-1198.	2.1	50
35	Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings. Neuropharmacology, 2008, 55, 474-482.	4.1	49
36	ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. Journal of Cell Science, 2003, 116, 629-636.	2.0	48

#	Article	IF	CITATIONS
37	Concentrative Uptake of Cyclic ADP-ribose Generated by BST-1+ Stroma Stimulates Proliferation of Human Hematopoietic Progenitors. Journal of Biological Chemistry, 2005, 280, 5343-5349.	3.4	43
38	<i>In vitro</i> activation of GAT1 transporters expressed in spinal cord gliosomes stimulates glutamate release that is abnormally elevated in the SOD1/G93A(+) mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2010, 113, 489-501.	3.9	42
39	Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology, 2013, 66, 253-263.	4.1	39
40	Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Scientific Reports, 2016, 6, 25441.	3.3	39
41	The Plant Hormone Abscisic Acid Stimulates the Proliferation of Human Hemopoietic Progenitors through the Second Messenger Cyclic ADP-Ribose. Stem Cells, 2009, 27, 2469-2477.	3.2	38
42	G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2. Scientific Reports, 2016, 6, 26658.	3.3	38
43	Stromaâ€generated cyclic ADPâ€ribose stimulates the expansion of early human hemopoietic progenitors by a paracrine interaction. FASEB Journal, 2001, 15, 1610-1612.	0.5	37
44	Autocrine abscisic acid plays a key role in quartzâ€induced macrophage activation. FASEB Journal, 2012, 26, 1261-1271.	0.5	37
45	InÂvitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals. Neuropharmacology, 2012, 63, 916-926.	4.1	37
46	The General Anesthetic Propofol Inhibits Transmembrane Calcium Current in Chick Sensory Neurons. Anesthesia and Analgesia, 1994, 78, 955???960.	2.2	36
47	Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line. Journal of Neurochemistry, 2006, 99, 165-176.	3.9	36
48	Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L98-L106.	2.9	35
49	From The Cover: ADP-ribosyl cyclases generate two unusual adenine homodinucleotides with cytotoxic activity on mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14509-14514.	7.1	35
50	The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia, 2015, 29, 356-368.	7.2	33
51	The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces. PLoS ONE, 2018, 13, e0199046.	2.5	32
52	Concentrative Influx of Functionally Active Cyclic ADP-ribose in Dimethyl Sulfoxide-differentiated HL-60 Cells. Journal of Biological Chemistry, 2004, 279, 22066-22075.	3.4	31
53	In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1 mouse model of amyotrophic lateral sclerosis. Neuropharmacology, 2017, 123, 433-445.	4.1	30
54	Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax, 2013, 68, 803-811.	5.6	29

#	Article	IF	CITATIONS
55	Swimming behavior regulation by GABAB receptors in Paramecium. Experimental Cell Research, 2003, 291, 398-405.	2.6	28
56	Altered glucose catabolism in the presynaptic and perisynaptic compartments of SOD1 ^{G93A} mouse spinal cord and motor cortex indicates that mitochondria are the site of bioenergetic imbalance in ALS. Journal of Neurochemistry, 2019, 151, 336-350.	3.9	24
57	Properties of ionic transport through phospholipid-glycolipid artificial bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1982, 693, 165-172.	2.6	23
58	Exocytosis regulates trafficking of GABA and glycine heterotransporters in spinal cord glutamatergic synapses: a mechanism for the excessive heterotransporter-induced release of glutamate in experimental amyotrophic lateral sclerosis. Neurobiology of Disease, 2015, 74, 314-324.	4.4	22
59	5-HT2A-mGlu2/3 receptor complex in rat spinal cord glutamatergic nerve endings: A 5-HT2A to mGlu2/3 signalling to amplify presynaptic mechanism of auto-control of glutamate exocytosis. Neuropharmacology, 2018, 133, 429-439.	4.1	22
60	Presynaptic, releaseâ€regulating mGlu ₂ â€preferring and mGlu ₃ â€preferring autoreceptors in CNS: pharmacological profiles and functional roles in demyelinating disease. British Journal of Pharmacology, 2016, 173, 1465-1477.	5.4	21
61	A role for GABAA receptors in the modulation of Paramecium swimming behavior. Neuroscience Letters, 2005, 386, 179-183.	2.1	20
62	Chapter 21 Glutamate Release from Astrocytic Gliosomes under Physiological and Pathological Conditions. International Review of Neurobiology, 2009, 85, 295-318.	2.0	20
63	The Role of the C-Terminus for Functional Heteromerization of the Plant Channel KDC1. Biophysical Journal, 2009, 96, 4063-4074.	0.5	20
64	Two systems of branching axons in monkey's retina. Journal of Comparative Neurology, 1991, 308, 149-161.	1.6	19
65	High affinity block by nimodipine of the internal calcium elevation in chronically depolarized rat cerebellar granule neurons. Neuroscience Letters, 1996, 207, 77-80.	2.1	18
66	Endocytosis of GABAB receptors modulates membrane excitability in the single-celled organism Paramecium. Journal of Cell Science, 2006, 119, 2056-2064.	2.0	18
67	The endocannabinoid system in rat gliosomes and its role in the modulation of glutamate release. Cellular and Molecular Life Sciences, 2011, 68, 833-845.	5.4	17
68	Immunoâ€pharmacological characterization of group II metabotropic glutamate receptors controlling glutamate exocytosis in mouse cortex and spinal cord. British Journal of Pharmacology, 2017, 174, 4785-4796.	5.4	17
69	Effect of gangliosides on phospholipid bilayers: A study with the lipophilic ions relaxation method. Journal of Membrane Biology, 1984, 82, 15-23.	2.1	16
70	Notes on theory and experimental conditions behind two-photon excitation microscopy. Microscopy Research and Technique, 2004, 63, 12-17.	2.2	16
71	The Highâ€Mobility Group Box 1 Cytokine Induces Transporterâ€Mediated Release of Glutamate from Glial Subcellular Particles (Gliosomes) Prepared from in Situâ€Matured Astrocytes. International Review of Neurobiology, 2007, 82, 73-93.	2.0	16
72	Mechanisms of bradykinin-induced contraction in human fetal lung fibroblasts. European Respiratory Journal, 2010, 36, 655-664.	6.7	15

#	Article	IF	CITATIONS
73	Dysregulated Ca2+ Homeostasis in Fanconi anemia cells. Scientific Reports, 2015, 5, 8088.	3.3	15
74	GABA receptor subunits identified in by immunofluorescence confocal microscopy. FEMS Microbiology Letters, 2004, 238, 449-453.	1.8	14
75	GABAAreceptor subunits identified inParameciumby immunofluorescence confocal microscopy. FEMS Microbiology Letters, 2004, 238, 449-453.	1.8	13
76	Activation of ?-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal. Journal of Neuroscience Research, 2005, 80, 424-433.	2.9	13
77	Bradykinin B2 receptor expression in the bronchial mucosa of allergic asthmatics: the role of <scp>NF</scp> â€ <scp>kB</scp> . Clinical and Experimental Allergy, 2016, 46, 428-438.	2.9	13
78	Presynaptic mGlu1 Receptors Control GABAB Receptors in an Antagonist-Like Manner in Mouse Cortical GABAergic and Glutamatergic Nerve Endings. Frontiers in Molecular Neuroscience, 2018, 11, 324.	2.9	13
79	Enhanced Function and Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression. International Journal of Molecular Sciences, 2019, 20, 4552.	4.1	13
80	Extracellular NAD+ Is an Agonist of the Human P2Y11 Purinergic Receptor in Human Granulocytes. Journal of Biological Chemistry, 2006, 281, 31419-31429.	3.4	13
81	Capacitance-voltage relationship in phospholipid bilayers containing gangliosides. FEBS Letters, 1983, 153, 315-319.	2.8	12
82	GABAB receptor intracellular trafficking after internalization inParamecium. Microscopy Research and Technique, 2005, 68, 290-295.	2.2	12
83	γ-Amino butyric acid (GABA) release in the ciliated protozoon <i>Paramecium</i> occurs by neuronal-like exocytosis. Journal of Experimental Biology, 2010, 213, 1251-1258.	1.7	12
84	A new function for glycine GlyT2 transporters: Stimulation of γâ€aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca ²⁺ â€dependent anion channels. Journal of Neuroscience Research, 2014, 92, 398-408.	2.9	12
85	Immuno-Pharmacological Characterization of Presynaptic GluN3A-Containing NMDA Autoreceptors: Relevance to Anti-NMDA Receptor Autoimmune Diseases. Molecular Neurobiology, 2019, 56, 6142-6155.	4.0	12
86	An interplexiform cell in the goldfish retina: light-evked response pattern and intracellular staining with horseradish peroxidase. Cell and Tissue Research, 1991, 264, 111-116.	2.9	11
87	Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7. Journal of Biological Chemistry, 2010, 285, 21165-21174.	3.4	10
88	Pharmacological characterization of N-methyl-d-aspartic acid (NMDA)-like receptors in the single-celled organism <i>Paramecium primaurelia</i> . Journal of Experimental Biology, 2014, 217, 463-71.	1.7	10
89	Patch-clamp recordings in isolated sponge cells (Axinella polypoides). Journal of Proteomics, 2003, 55, 179-189.	2.4	9
90	Three-dimensional microscopy migrates to the web with ?PowerUp Your Microscope?. Microscopy Research and Technique, 2004, 64, 196-203.	2.2	9

#	Article	IF	CITATIONS
91	Effect of the bioactive metabolite euplotin C on phagocytosis and fluid-phase endocytosis in the single-celled eukaryote Paramecium. Aquatic Toxicology, 2007, 85, 67-75.	4.0	9
92	Co-Existence of GABA and Glu Transporters in the Central Nervous System. Current Topics in Medicinal Chemistry, 2006, 6, 979-988.	2.1	8
93	Pharmacological Modulation of the Bradykinin-Induced Differentiation of Human Lung Fibroblasts: Effects of Budesonide and Formoterol. Journal of Asthma, 2012, 49, 1004-1011.	1.7	7
94	Antibodies Against the NH2-Terminus of the GluA Subunits Affect the AMPA-Evoked Releasing Activity: The Role of Complement. Frontiers in Immunology, 2021, 12, 586521.	4.8	7
95	Two-Photon Excitation Fluorescence Microscopy. , 2007, , 751-789.		6
96	Subcellular and Intercellular Traffic of NAD ⁺ , NAD ⁺ Precursors and NAD ⁺ -Derived Signal Metabolites and Second Messengers: Old and New Topological Paradoxes. Messenger (Los Angeles, Calif: Print), 2012, 1, 34-52.	0.3	6
97	Colocalization of neurotransmitter transporters on the plasma membrane of the same nerve terminal may reflect cotransmission. Brain Research Bulletin, 2016, 127, 100-110.	3.0	5
98	Evidence for ciliary pigment localization in colored ciliates and implications for their photosensory transduction chain: A confocal microscopy study. Microscopy Research and Technique, 2007, 70, 1028-1033.	2.2	4
99	Biophysical effects of the natural product euplotin C on the Paramecium membrane. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 1061-1069.	1.6	4
100	Extracellular pancuronium affects sodium current in chick embryo sensory neurones. British Journal of Pharmacology, 1994, 111, 283-287.	5.4	3
101	Imaging of Endocytosis in Paramecium by Confocal Microscopy. , 0, , .		3
102	Visualizing GABAB Receptor Internalization and Intracellular Trafficking. Neuromethods, 2012, , 71-95.	0.3	0
103	Shwachman-Diamond Syndrome: Energetic Stress, Calcium Homeostasis and mTOR Pathway. Blood, 2015, 126, 2410-2410.	1.4	0
104	From Microscopy to Nanoscopy: How to Get and Read Optical Data at Single Molecule Level Using Confocal and Two-Photon Excitation Microscopy. , 2005, , 187-207.		0