List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1850666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20, 200-216.	46.4	1,990
2	Allelopathy—a natural alternative for weed control. Pest Management Science, 2007, 63, 327-348.	3.4	354
3	Search for a Standard Phytotoxic Bioassay for Allelochemicals. Selection of Standard Target Speciesâ€. Journal of Agricultural and Food Chemistry, 2000, 48, 2512-2521.	5.2	242
4	Just how insoluble are monoterpenes?. Journal of Chemical Ecology, 1993, 19, 1799-1807.	1.8	194
5	Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry, 2000, 53, 747-757.	2.9	179
6	Recent advances in allelopathy for weed control: from knowledge to applications. Pest Management Science, 2019, 75, 2413-2436.	3.4	168
7	Benzoxazinoids in Rye Allelopathy - From Discovery to Application in Sustainable Weed Control and Organic Farming. Journal of Chemical Ecology, 2013, 39, 154-174.	1.8	154
8	Structural Elucidation and Chemistry of a Novel Family of Bioactive Sesquiterpenes: Heliannuols. Journal of Organic Chemistry, 1994, 59, 8261-8266.	3.2	148
9	Degradation Studies on Benzoxazinoids. Soil Degradation Dynamics of 2,4-Dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and Its Degradation Products, Phytotoxic Allelochemicals from Gramineae. Journal of Agricultural and Food Chemistry, 2004, 52, 6402-6413	5.2	125
10	Bioactive terpenoids from sunflower leaves cv. Peredovick®. Phytochemistry, 2002, 61, 687-692.	2.9	108
11	Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. Natural Product Reports, 2009, 26, 478.	10.3	106
12	Structureâ^'Activity Relationships (SAR) Studies of Benzoxazinones, Their Degradation Products and Analogues. Phytotoxicity on Standard Target Species (STS). Journal of Agricultural and Food Chemistry, 2005, 53, 538-548.	5.2	99
13	Novel sesquiterpene from bioactive fractions of cultivar sunflowers. Tetrahedron Letters, 1993, 34, 1999-2002.	1.4	96
14	Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry, 1999, 52, 805-813.	2.9	93
15	Degradation Studies on Benzoxazinoids. Soil Degradation Dynamics of (2R)-2-O-β-d-Glucopyranosyl-4-hydroxy-(2H)- 1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and Its Degradation Products, Phytotoxic Allelochemicals from Gramineae. Journal of Agricultural and Food Chemistry, 2005. 53. 554-561.	5.2	92
16	Bioactive norsesquiterpenes from Helianthus annuus with potential allelopathic activity. Phytochemistry, 1998, 48, 631-636.	2.9	88
17	Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry, 1992, 31, 1969-1977.	2.9	87
18	Alfalfa (Medicago sativaL.) Flavonoids. 2. Tricin and Chrysoeriol Glycosides from Aerial Parts. Journal of Agricultural and Food Chemistry, 2001, 49, 5310-5314.	5.2	82

#	Article	IF	CITATIONS
19	Allelochemicals from sunflower leaves cv. Peredovick. Phytochemistry, 1999, 52, 613-621.	2.9	80
20	Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry, 1996, 43, 1205-1215.	2.9	78
21	New Bioactive Plant Heliannuols from Cultivar Sunflower Leaves1. Journal of Natural Products, 1999, 62, 1636-1639.	3.0	76
22	Isolation and Synthesis of Allelochemicals from Gramineae:Â Benzoxazinones and Related Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 991-1000.	5.2	76
23	Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Medicinal Chemistry Research, 2016, 25, 1274-1285.	2.4	72
24	Potential allelopathic guaianolides from cultivar sunflower leaves, var. SH-222. Phytochemistry, 1993, 34, 669-674.	2.9	71
25	Bioactive phenolics and polar compounds from Melilotus messanensis1Part 8 in the series "Natural Products as Allelochemicalsâ€; for Part 7 see Macılas et al. [Macılas, F. A., Simonet, A. M., Galindo, J. C. G., Pacheco, P. C. and Sánchez, J. A., Phytochemistry, 1998. 149, 709].1. Phytochemistry, 1999, 50, 35-46.	2.9	68
26	Structureâ^'Activity Relationship (SAR) Studies of Benzoxazinones, Their Degradation Products, and Analogues. Phytotoxicity on Problematic WeedsAvena fatuaL. andLolium rigidumGaud Journal of Agricultural and Food Chemistry, 2006, 54, 1040-1048.	5.2	65
27	Bioactive steroids from Oryza sativa L Steroids, 2006, 71, 603-608.	1.8	65
28	Sunflower sesquiterpene lactone models induce Orobanche cumana seed germination. Phytochemistry, 2000, 53, 45-50.	2.9	64
29	Bioactive flavonoids from Helianthus annuus cultivars. Phytochemistry, 1997, 45, 683-687.	2.9	63
30	Allelopathy as a new strategy for sustainable ecosystems development. Uchu Seibutsu Kagaku, 2003, 17, 18-23.	0.3	62
31	Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochemistry Reviews, 2007, 7, 179-194.	6.5	62
32	Heliannuol E. A novel bioactive sesquiterpene of the heliannane family. Tetrahedron Letters, 1999, 40, 4725-4728.	1.4	61
33	Bioactive Lignans from a Cultivar ofHelianthus annuus. Journal of Agricultural and Food Chemistry, 2004, 52, 6443-6447.	5.2	60
34	Effects of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. Journal of Plant Physiology, 2005, 162, 1304-1307.	3.5	59
35	Isolation and Phytotoxicity of Terpenes from Tectona grandis. Journal of Chemical Ecology, 2010, 36, 396-404.	1.8	59
36	Potential allelopathic lupane triterpenes from bioactive fractions of melilotus messanensis*. Phytochemistry, 1994, 36, 1369-1379.	2.9	58

#	Article	IF	CITATIONS
37	Bioactive Carotanes fromTrichodermavirens. Journal of Natural Products, 2000, 63, 1197-1200.	3.0	58
38	Phytotoxicity of Cardoon (<i>Cynara cardunculus</i>) Allelochemicals on Standard Target Species and Weeds. Journal of Agricultural and Food Chemistry, 2014, 62, 6699-6706.	5.2	58
39	Application of Hansch's Model to Capsaicinoids and Capsinoids: A Study Using the Quantitative Structureâ^'Activity Relationship. A Novel Method for the Synthesis of Capsinoids. Journal of Agricultural and Food Chemistry, 2010, 58, 3342-3349.	5.2	57
40	Novel Bioactive Breviane Spiroditerpenoids fromPenicillium brevicompactumDierckx. Journal of Organic Chemistry, 2000, 65, 9039-9046.	3.2	56
41	Bioactive apocarotenoids from Tectona grandis. Phytochemistry, 2008, 69, 2708-2715.	2.9	55
42	Bioactive Steroids and Triterpenes from Melilotus messanensis and Their Allelopathic Potential. Journal of Chemical Ecology, 1997, 23, 1781-1803.	1.8	54
43	Heliespirone A. The first member of a novel family of bioactive sesquiterpenes. Tetrahedron Letters, 1998, 39, 427-430.	1.4	54
44	Evolution and current status of ecological phytochemistry. Phytochemistry, 2007, 68, 2917-2936.	2.9	54
45	Dehydrozaluzanin C: a potent plant growth regulator with potential use as a natural herbicide template. Phytochemistry, 2000, 54, 165-171.	2.9	53
46	Effect of the addition of cosolvent on the supercritical fluid extraction of bioactive compounds from Helianthus annuus L Journal of Supercritical Fluids, 2007, 41, 43-49.	3.2	53
47	Evidence for an Allelopathic Interaction Between Rye and Wild Oats. Journal of Agricultural and Food Chemistry, 2014, 62, 9450-9457.	5.2	52
48	Heliespirones B and C:  Two New Plant Heliespiranes with a Novel Spiro Heterocyclic Sesquiterpene Skeleton. Organic Letters, 2006, 8, 4513-4516.	4.6	51
49	The Use of Allelopathic Studies in the Search for Natural Herbicides. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 237-255.	0.4	50
50	Sesquiterpenes from noncapitate glandular trichomes of Helianthus annuus. Phytochemistry, 1992, 31, 1541-1544.	2.9	47
51	Sesquiterpene Lactones with Potential Use as Natural Herbicide Models (I): trans,trans-Germacranolides. Journal of Agricultural and Food Chemistry, 1999, 47, 4407-4414.	5.2	47
52	(+)-Brevione A. The first member of a novel family of bioactive spiroditerpenoids isolated from Penicillium brevicompactum Dierckx. Tetrahedron Letters, 2000, 41, 2683-2686.	1.4	47
53	Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers. Phytochemistry Reviews, 2013, 12, 979-1000.	6.5	47
54	Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and Meliaceae families. Phytochemistry Letters, 2014, 8, 226-232.	1.2	46

#	Article	lF	CITATIONS
55	Trends in the Synthesis and Functionalization of Guaianolides. European Journal of Organic Chemistry, 2015, 2015, 2093-2110.	2.4	46
56	Synthesis of heliannane skeletons. Facile preparation of (±)-heliannuol D. Tetrahedron, 2003, 59, 1679-1683.	1.9	44
57	Phytotoxins from <i>Tithonia diversifolia</i> . Journal of Natural Products, 2015, 78, 1083-1092.	3.0	44
58	Flavonoids from Centaurea clementei. Journal of Natural Products, 1985, 48, 819-822.	3.0	43
59	Bioactive apocarotenoids annuionones F and G: structural revision of annuionones A, B and E. Phytochemistry, 2004, 65, 3057-3063.	2.9	42
60	Optimization of Benzoxazinones as Natural Herbicide Models by Lipophilicity Enhancement. Journal of Agricultural and Food Chemistry, 2006, 54, 9357-9365.	5.2	42
61	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2173-2186.	1.8	41
62	Sesquiterpene Lactones with Potential Use as Natural Herbicide Models. 2. Guaianolidesâ€. Journal of Agricultural and Food Chemistry, 2000, 48, 5288-5296.	5.2	40
63	Sesquiterpene Lactones as Allelochemicals. Journal of Natural Products, 2006, 69, 795-800.	3.0	40
64	Supercritical fluid extraction of bioactive compounds from sunflower leaves with carbon dioxide and water on a pilot plant scale. Journal of Supercritical Fluids, 2008, 45, 37-42.	3.2	40
65	Allelopathy in the Search for Natural Herbicide Models. ACS Symposium Series, 1994, , 310-329.	0.5	39
66	Bioactive polar triterpenoids from Melilotus messanensis. Phytochemistry, 1998, 49, 709-717.	2.9	38
67	Allelopathic potential of menthofuran monoterpenes fromCalamintha ashei. Journal of Chemical Ecology, 1994, 20, 3345-3359.	1.8	37
68	Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area. Biochemical Systematics and Ecology, 2002, 30, 1011-1022.	1.3	37
69	Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochemistry Reviews, 2007, 7, 155-178.	6.5	37
70	Phytotoxic steroidal saponins from Agave offoyana leaves. Phytochemistry, 2014, 105, 92-100.	2.9	37
71	Acylated apigenin glycosides from alfalfa (Medicago sativa L.) var. Artal. Phytochemistry, 2001, 57, 1223-1226.	2.9	36
72	Effects of Some Benzoxazinoids on in Vitro Growth ofCephalosporium gramineumand Other Fungi Pathogenic to Cereals and onCephalosporiumStripe of Winter Wheat. Journal of Agricultural and Food Chemistry, 2006, 54, 1036-1039.	5.2	36

#	Article	IF	CITATIONS
73	Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell and Environment, 2020, 43, 1655-1668.	5.7	35
74	Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food and Bioproducts Processing, 2010, 88, 247-252.	3.6	34
75	Isolation of Bioactive Compounds from Sunflower Leaves (<i>Helianthus annuus</i> L) Extracted with Supercritical Carbon Dioxide. Journal of Agricultural and Food Chemistry, 2015, 63, 6410-6421.	5.2	34
76	First European interlaboratory study of the analysis of benzoxazinone derivatives in plants by liquid chromatography. Journal of Chromatography A, 2004, 1047, 69-76.	3.7	33
77	Extraction of natural compounds with biological activity from sunflower leaves using supercritical carbon dioxide. Chemical Engineering Journal, 2009, 152, 301-306.	12.7	33
78	Bioactive steroidal saponins from Agave offoyana flowers. Phytochemistry, 2013, 95, 298-307.	2.9	33
79	Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Molecules, 2016, 21, 1432.	3.8	32
80	The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron. Frontiers in Plant Science, 2019, 10, 249.	3.6	32
81	The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var.) Tj ETQq1 1 0.78	4314 rgBT	Ögyerlock 1
82	Allelochemicals fromPilocarpus goudotianus leaves. Journal of Chemical Ecology, 1993, 19, 1371-1379.	1.8	31
83	Interactions of Bacillus mojavensis and Fusarium verticillioides with a Benzoxazolinone (BOA) and its Transformation Product, APO. Journal of Chemical Ecology, 2007, 33, 1885-1897.	1.8	31
84	Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochemical Systematics and Ecology, 2013, 46, 29-35.	1.3	31
85	SAR Studies of Sesquiterpene Lactones asOrobanche cumanaSeed Germination Stimulants. Journal of Agricultural and Food Chemistry, 2002, 50, 1911-1917.	5.2	30
86	Helikauranoside A, a New Bioactive Diterpene. Journal of Chemical Ecology, 2008, 34, 65-69.	1.8	30
87	Anthratectone and Naphthotectone, Two Quinones from Bioactive Extracts of Tectona grandis. Journal of Chemical Ecology, 2011, 37, 1341-1348.	1.8	30
88	Influence of Genotype and Harvest Time on the <i>Cynara cardunculus</i> L. Sesquiterpene Lactone Profile. Journal of Agricultural and Food Chemistry, 2019, 67, 6487-6496.	5.2	30
89	New Chemical Clues for Broomrape-Sunflower Hostâ^'Parasite Interactions: Synthesis of Guaianestrigolactones. Journal of Agricultural and Food Chemistry, 2009, 57, 5853-5864.	5.2	29
90	Saponins and polar compounds from Trifolium resupinatum. Phytochemistry, 1999, 51, 1065-1067.	2.9	28

#	Article	IF	CITATIONS
91	Application of Hansch's Model to Guaianolide Ester Derivatives: A Quantitative Structureâ^'Activity Relationship Study. Journal of Agricultural and Food Chemistry, 2005, 53, 3530-3539.	5.2	28
92	Structureâ^'Activity Relationship Studies of Benzoxazinones and Related Compounds. Phytotoxicity onEchinochloa crus-galli(L.) P. Beauv Journal of Agricultural and Food Chemistry, 2005, 53, 4373-4380.	5.2	28
93	Ecological phytochemistry of Cerrado (Brazilian savanna) plants. Phytochemistry Reviews, 2013, 12, 839-855.	6.5	28
94	Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil. PLoS ONE, 2016, 11, e0161670.	2.5	28
95	Unusual C,O-Fused Glycosylapigenins from <i>Serjania marginata</i> Leaves. Journal of Natural Products, 2015, 78, 77-84.	3.0	27
96	New Herbicide Models from Benzoxazinones:Â Aromatic Ring Functionalization Effects. Journal of Agricultural and Food Chemistry, 2006, 54, 9843-9851.	5.2	26
97	Aloe barbadensis: how a miraculous plant becomes reality. Phytochemistry Reviews, 2013, 12, 581-602.	6.5	26
98	The Joint Action of Sesquiterpene Lactones from Leaves as an Explanation for the Activity of <i>Cynara cardunculus</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 6416-6424.	5.2	26
99	Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. Journal of Supercritical Fluids, 2019, 143, 32-41.	3.2	26
100	A new UHPLCâ€MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochemical Analysis, 2019, 30, 110-116.	2.4	26
101	Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay. Ultrasonics Sonochemistry, 2014, 21, 1578-1584.	8.2	25
102	Ecological Relevance of the Major Allelochemicals in <i>Lycopersicon esculentum</i> Roots and Exudates. Journal of Agricultural and Food Chemistry, 2018, 66, 4638-4644.	5.2	25
103	Strigolactones: New players in the nitrogen–phosphorus signalling interplay. Plant, Cell and Environment, 2022, 45, 512-527.	5.7	25
104	Natural and Synthetic Podolactones with Potential Use as Natural Herbicide Modelsâ€. Journal of Agricultural and Food Chemistry, 2000, 48, 3003-3007.	5.2	24
105	Antifungal Activity of a New Phenolic Compound from Capitulum of a Head Rot-resistant Sunflower Genotype. Journal of Chemical Ecology, 2007, 33, 2245-2253.	1.8	24
106	Synergy and Other Interactions between Polymethoxyflavones from Citrus Byproducts. Molecules, 2015, 20, 20079-20106.	3.8	24
107	Phytotoxicity evaluation of sesquiterpene lactones and diterpenes from species of the Decachaeta , Salvia and Podachaenium genera. Phytochemistry Letters, 2016, 18, 68-76.	1.2	24
108	Tectonoelins, new norlignans from a bioactive extract of Tectona grandis. Phytochemistry Letters, 2012, 5, 382-386.	1.2	23

#	Article	IF	CITATIONS
109	Phytotoxicity Study on <i>Bidens sulphurea</i> Sch. Bip. as a Preliminary Approach for Weed Control. Journal of Agricultural and Food Chemistry, 2017, 65, 5161-5172.	5.2	23
110	Complexation of sesquiterpene lactones with cyclodextrins: synthesis and effects on their activities on parasitic weeds. Organic and Biomolecular Chemistry, 2017, 15, 6500-6510.	2.8	23
111	Studies on the Stereostructure of Eudesmanolides from Umbelliferae: Total Synthesis of (+)-Decipienin A. Tetrahedron, 2000, 56, 3409-3414.	1.9	22
112	Absolute configuration of bioactive expansolides A and B from Aspergillus fumigatus Fresenius. Tetrahedron Letters, 2003, 44, 941-943.	1.4	21
113	Phthalimideâ€derived strigolactone mimics as germinating agents for seeds of parasitic weeds. Pest Management Science, 2016, 72, 2069-2081.	3.4	21
114	Terpene synthesis. 1. Chemical transformation of deacylsubexpinnatin into the natural oxetane lactone subexpinnatin C. Journal of Organic Chemistry, 1987, 52, 3323-3326.	3.2	20
115	First synthesis of two naturally occurring oxetane lactones: clementein and clementein b. Tetrahedron, 1993, 49, 2499-2508.	1.9	20
116	Characterization of the fraction components using 1D TOCSY and 1D ROESY experiments. Four new spirostane saponins fromAgave brittoniana Trel. spp.Brachypus. Magnetic Resonance in Chemistry, 2007, 45, 615-620.	1.9	20
117	A stereoselective route towards heliannuol A. Tetrahedron, 2008, 64, 5502-5508.	1.9	20
118	Facile Preparation of Bioactive <i>seco</i> -Guaianolides and Guaianolides from <i>Artemisia gorgonum</i> and Evaluation of Their Phytotoxicity. Journal of Natural Products, 2012, 75, 1967-1973.	3.0	20
119	Integrifolin, a guaianolide from Andryala integrifolia. Phytochemistry, 1984, 23, 912-913.	2.9	19
120	Flavonoids from Artemisia lanata. Phytochemistry, 1986, 25, 1502-1504.	2.9	19
121	Sesquiterpenes from Rudbeckia grandiflora. Phytochemistry, 1988, 27, 2195-2198.	2.9	19
122	Allelochemicals from sunflowers: chemistry, bioactivity and applications. , 2002, , 73-87.		19
123	11,16 Oxetane lactones. Spectroscopic evidences and conformational analysis. Tetrahedron, 2006, 62, 7747-7755.	1.9	19
124	Influence of in vitro growth conditions in the production of defence compounds in Mentha pulegium L Phytochemistry Letters, 2014, 8, 233-244.	1.2	19
125	Influence of lipophilicity in <i>O</i> â€acyl and <i>O</i> â€alkyl derivatives of juglone and lawsone: a structure–activity relationship study in the search for natural herbicide models. Pest Management Science, 2018, 74, 682-694.	3.4	19
126	Study of photochemical addition of acyl radical to electron-deficient olefins. Tetrahedron, 1992, 48, 3345-3352.	1.9	18

#	Article	IF	CITATIONS
127	Enantiospecific syntheses of the potent bioactives nagilactone F and the mould metabolite LL-Z1271α an evaluation of their allelopathic potential. Tetrahedron, 1999, 55, 7289-7304.	1.9	18
128	Synthesis of melampolides and cis,cis-germacranolides as natural herbicide models. Tetrahedron, 2004, 60, 8477-8488.	1.9	18
129	Effect of the pre-treatment of the samples on the natural substances extraction from L. using supercritical carbon dioxide. Talanta, 2005, 67, 175-181.	5.5	18
130	Synthesis of the western half of breviones C, D, F and G. Tetrahedron, 2010, 66, 4125-4132.	1.9	18
131	Combined Strategy for Phytotoxicity Enhancement of Benzoxazinones. Journal of Agricultural and Food Chemistry, 2010, 58, 2047-2053.	5.2	18
132	Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos. Aquatic Toxicology, 2019, 211, 81-91.	4.0	18
133	"An efficient and mild entry to 1,4-dicarbonyl compounds via photochemical addition of acyl radical to electron-deficient olefins― Tetrahedron Letters, 1990, 31, 3063-3066.	1.4	17
134	Sesquiterpene lactones and lignanes from Rudbeckia species. Phytochemistry, 1990, 29, 561-565.	2.9	17
135	Studies on the stereostructure of eudesmanolides from Umbelliferae: synthesis of 11β-angeloyloxy-α-santonin. Tetrahedron, 1994, 50, 5439-5450.	1.9	17
136	First total synthesis of (±)-helibisabonol A. Tetrahedron Letters, 2002, 43, 6417-6420.	1.4	17
137	Synthesis and structural revision of annuionone A. Tetrahedron Letters, 2003, 44, 7023-7025.	1.4	17
138	Possible Mechanism of Inhibition of 6-Methoxy-Benzoxazolin-2(3H)-One on Germination of Cress (Lepidium sativum L.). Journal of Chemical Ecology, 2006, 32, 1101-1109.	1.8	17
139	Inhibition of germination and α-amylase induction by 6-methoxy-2-benzoxazolinone in twelve plant species. Biologia Plantarum, 2008, 52, 351-354.	1.9	17
140	Current research in biotechnology: Exploring the biotech forefront. Current Research in Biotechnology, 2019, 1, 34-40.	3.7	17
141	Bioassay-Guided Isolation of Fungistatic Compounds from <i>Mimosa caesalpiniifolia</i> Leaves. Journal of Natural Products, 2019, 82, 1496-1502.	3.0	17
142	A Study on the Phytotoxic Potential of the Seasoning Herb Marjoram (Origanum majorana L.) Leaves. Molecules, 2021, 26, 3356.	3.8	17
143	Guaianolides from Centaurea canariensis. Phytochemistry, 1985, 24, 2107-2109.	2.9	16
144	Structure–activity relationship of benzoxazinones and related compounds with respect to the growth inhibition and α-amylase activity in cress seedlings. Journal of Plant Physiology, 2010, 167, 1221-1225.	3.5	16

#	Article	IF	CITATIONS
145	Easy Access to Alkoxy, Amino, Carbamoyl, Hydroxy, and Thiol Derivatives of Sesquiterpene Lactones and Evaluation of Their Bioactivity on Parasitic Weeds. Journal of Agricultural and Food Chemistry, 2019, 67, 10764-10773.	5.2	16
146	Effect of Shading on the Sesquiterpene Lactone Content and Phytotoxicity of Cultivated Cardoon Leaf Extracts. Journal of Agricultural and Food Chemistry, 2020, 68, 11946-11953.	5.2	16
147	Structural determination of clementein, a new guaianolide isolated from Centaurea clementei. Tetrahedron Letters, 1983, 24, 1641-1642.	1.4	15
148	13C NMR of coumarins. Il—Khellactones: Spectroscopic criteria to establish the relative configuration of the dihydropyran ring. Magnetic Resonance in Chemistry, 1989, 27, 653-658.	1.9	15
149	13 C NMR of coumarins. Ill—Simple coumarins. Magnetic Resonance in Chemistry, 1989, 27, 892-894.	1.9	15
150	Melampolides from Lecocarpus pinnatifidus. Phytochemistry, 1992, 31, 2747-2754.	2.9	15
151	Developing new herbicide models from allelochemicals. Pest Management Science, 1999, 55, 662-665.	0.4	15
152	Soil biodegradation of a benzoxazinone analog proposed as a natural products-based herbicide. Plant and Soil, 2015, 393, 207-214.	3.7	15
153	An Overview of the Chemical Characteristics, Bioactivity and Achievements Regarding the Therapeutic Usage of Acetogenins from Annona cherimola Mill Molecules, 2021, 26, 2926.	3.8	15
154	Triterpenoids from Melilotus messanensis; soyasapogenol G, the first natural carbonate derivative. Phytochemistry, 1996, 41, 1573-1577.	2.9	14
155	Potential allelopathic of the fractions obtained from sunflower leaves using supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 60, 28-37.	3.2	14
156	Guaianolides for Multipurpose Molecular Design. ACS Symposium Series, 2013, , 167-188.	0.5	14
157	Preparation and phytotoxicity study of lappalone from dehydrocostuslactone. Phytochemistry Letters, 2017, 20, 66-72.	1.2	14
158	Resistance modulatory and efflux-inhibitory activities of capsaicinoids and capsinoids. Bioorganic Chemistry, 2019, 82, 378-384.	4.1	14
159	One-Step Encapsulation of <i>ortho</i> -Disulfides in Functionalized Zinc MOF. Enabling Metal–Organic Frameworks in Agriculture. ACS Applied Materials & Interfaces, 2021, 13, 7997-8005.	8.0	14
160	Structure, Bioactivity and Analytical Methods for the Determination of Yucca Saponins. Molecules, 2021, 26, 5251.	3.8	14
161	Strategies for the synthesis of canonical, non-canonical and analogues of strigolactones, and evaluation of their parasitic weed germination activity. Phytochemistry Reviews, 2022, 21, 1627-1659.	6.5	14
162	Megalanthine, a Bioactive Sesquiterpenoid from Heliotropium megalanthum, its Degradation Products and their Bioactivities. Journal of Chemical Ecology, 2009, 35, 39-49.	1.8	13

#	Article	IF	CITATIONS
163	Practical First Total Synthesis of the Potent Phytotoxic (±)â€Naphthotectone, Isolated from <i>Tectona grandis</i> . European Journal of Organic Chemistry, 2013, 2013, 6175-6180.	2.4	13
164	Isolation and Structural Determination of Triterpenoid Glycosides from the Aerial Parts of Alsike Clover (Trifolium hybridum L.). Journal of Agricultural and Food Chemistry, 2013, 61, 2631-2637.	5.2	13
165	Bioactivity and quantitative analysis of isohexenylnaphthazarins in root periderm of two Echium spp.: E.Âplantagineum and E.Âgaditanum. Phytochemistry, 2017, 141, 162-170.	2.9	13
166	(+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships. Molecules, 2018, 23, 1529.	3.8	13
167	In Situ Eco Encapsulation of Bioactive Agrochemicals within Fully Organic Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 41925-41934.	8.0	13
168	Phytotoxicity Study of Ortho-Disubstituted Disulfides and Their Acyl Derivatives. ACS Omega, 2019, 4, 2362-2368.	3.5	13
169	Provitamin supramolecular polymer micelle with pH responsiveness to control release, bioavailability enhancement and potentiation of cytotoxic efficacy. Colloids and Surfaces B: Biointerfaces, 2019, 173, 85-93.	5.0	13
170	Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control. Journal of Chemical Ecology, 2020, 46, 871-880.	1.8	13
171	Synthesis of Active Strigolactone Analogues Based on Eudesmane- and Guaiane-Type Sesquiterpene Lactones. Journal of Agricultural and Food Chemistry, 2020, 68, 9636-9645.	5.2	13
172	Chemical evidence for the effect of <i>Urochloa ruziziensis</i> on glyphosateâ€resistant soybeans. Pest Management Science, 2017, 73, 2071-2078.	3.4	13
173	Structure, chemistry and stereochemistry of clementeins, sesquiterpene lactones from centaurea clementei. Tetrahedron, 1986, 42, 3611-3622.	1.9	12
174	Menthofurans from Calamintha ashei and the absolute configuration of desacetylcalaminthone. Phytochemistry, 1989, 28, 79-82.	2.9	12
175	Phytotoxic Potential of <i>Onopordum acanthium</i> L. (Asteraceae). Chemistry and Biodiversity, 2014, 11, 1247-1255.	2.1	12
176	Brevianes Revisited. Chemical Reviews, 2014, 114, 2717-2732.	47.7	12
177	Helikaurolides A–D with a Diterpene-Sesquiterpene Skeleton from Supercritical Fluid Extracts of <i>Helianthus annuus</i> L. var. Arianna. Organic Letters, 2015, 17, 4730-4733.	4.6	12
178	Alibertia edulis (L.C. Rich.) A.C. Rich – A potent diuretic arising from Brazilian indigenous species. Journal of Ethnopharmacology, 2017, 196, 193-200.	4.1	12
179	Gibberellic and kaurenoic hybrid strigolactone mimics for seed germination of parasitic weeds. Pest Management Science, 2017, 73, 2529-2537.	3.4	12
180	A Novel Electron Microscopic Characterization of Core/Shell Nanobiostimulator Against Parasitic Plants. ACS Applied Materials & Interfaces, 2018, 10, 2354-2359.	8.0	12

#	Article	IF	CITATIONS
181	Sesquiterpene lactones from Artemisia lanata. Phytochemistry, 1988, 27, 2229-2233.	2.9	11
182	13C NMR of coumarins. V—3-prenylated coumarins. Magnetic Resonance in Chemistry, 1990, 28, 732-735.	1.9	11
183	Sesquiterpenes from <i>Chrysoma Pauciflosculosa</i> . Spectroscopy Letters, 1995, 28, 1061-1074.	1.0	11
184	Triterpenoid saponins from the aerial parts of Trifolium argutum Sol. and their phytotoxic evaluation. Phytochemistry Letters, 2015, 13, 165-170.	1.2	11
185	Steroidal Saponins from <i>Furcraea hexapetala</i> Leaves and Their Phytotoxic Activity. Journal of Natural Products, 2016, 79, 2903-2911.	3.0	11
186	Facile synthesis of anhydrojudaicin and 11,13-dehydroanhydrojudaicin, two eudesmanolide-skeleton lactones with potential allelopathic activity. Phytochemistry Letters, 2019, 31, 229-236.	1.2	11
187	Structure <i>â€</i> activity relationship studies on naphthoquinone analogs. The search for new herbicides based on natural products. Pest Management Science, 2019, 75, 2517-2529.	3.4	11
188	Bio-Guided Isolation of Acetogenins from Annona cherimola Deciduous Leaves: Production of Nanocarriers to Boost the Bioavailability Properties. Molecules, 2020, 25, 4861.	3.8	11
189	Allelopathic Activity of Strigolactones on the Germination of Parasitic Plants and Arbuscular Mycorrhizal Fungi Growth. Agronomy, 2021, 11, 2174.	3.0	11
190	13C NMR of coumarins. IV—Furanocoumarins. Magnetic Resonance in Chemistry, 1990, 28, 219-222.	1.9	10
191	Nucleic-acid-binding properties of the C2-L1Tc nucleic acid chaperone encoded by L1Tc retrotransposon. Biochemical Journal, 2009, 424, 479-490.	3.7	10
192	Aneugenic effects of benzoxazinones in cultured human cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 695, 81-86.	1.7	10
193	Synthesis and phytotoxicity of 4,5 functionalized tetrahydrofuran-2-ones. Journal of the Brazilian Chemical Society, 2012, 23, 2266-2270.	0.6	10
194	Triterpene Saponins from the Aerial Parts of Trifolium medium L. var. <i>sarosiense</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 9789-9796.	5.2	10
195	Evaluation of the Allelopathic Potential of Leaf, Stem, and Root Extracts of <i>Ocotea pulchella </i> <scp>Nees et Mart</scp> . Chemistry and Biodiversity, 2016, 13, 1058-1067.	2.1	10
196	The joint action in the bioactivity studies of Antarctic lichen Umbilicaria antarctica : Synergic-biodirected isolation in a preliminary holistic ecological study. Phytochemistry Letters, 2017, 20, 433-442.	1.2	10
197	Bioherbicide Potential of <i>Eucalyptus saligna</i> Leaf Litter Essential Oil. Chemistry and Biodiversity, 2020, 17, e2000407.	2.1	10
198	Allelopathy: The Chemical Language of Plants. Progress in the Chemistry of Organic Natural Products, 2020, 112, 1-84.	1.1	10

#	Article	IF	CITATIONS
199	Helivypolide G. A novel dimeric bioactive sesquiterpene lactone. Tetrahedron Letters, 2004, 45, 6567-6570.	1.4	9
200	SFE kinetics of bioactive compounds fromHelianthus annuusL Journal of Separation Science, 2009, 32, 1445-1453.	2.5	9
201	Aromaticâ€ringâ€functionalised benzoxazinones in the system <i>Oryza sativa–Echinochloa crusâ€galli</i> as biorational herbicide models. Pest Management Science, 2009, 65, 1104-1113.	3.4	9
202	Synthesis of Bioactive Speciosins G and P fromHexagonia speciosa. Journal of Natural Products, 2014, 77, 2029-2036.	3.0	9
203	Exudados de la raiz y su relevancia actual en las interacciones alelopaticas. Quimica Nova, 2009, 32, 198-213.	0.3	8
204	Phytotoxic studies of naphthoquinone intermediates from the synthesis of the natural product Naphthotectone. Research on Chemical Intermediates, 2017, 43, 4387-4400.	2.7	8
205	Synthesis and antimicrobial activity of some benzoxazinoids derivatives of 2-nitrophenol and 3-hydroxy-2-nitropyridine. Synthetic Communications, 2019, 49, 286-296.	2.1	8
206	Pharmacological Activities of Aminophenoxazinones. Molecules, 2021, 26, 3453.	3.8	8
207	Modified Benzoxazinones in the System <i>Oryza sativa</i> ∲ <i>Echinochloa crus-galli</i> : An Approach to the Development of Biorational Herbicide Models. Journal of Agricultural and Food Chemistry, 2008, 56, 9941-9948.	5.2	7
208	Biotransformation of ethyl 2-(2′-nitrophenoxy)acetate to benzohydroxamic acid (D-DIBOA) by Escherichia coli. Process Biochemistry, 2011, 46, 358-364.	3.7	7
209	Allelopathic Potential of <i>Rapanea umbellata</i> Leaf Extracts. Chemistry and Biodiversity, 2013, 10, 1539-1548.	2.1	7
210	Hydrolysable Tannins and Biological Activities of Meriania hernandoi and Meriania nobilis (Melastomataceae). Molecules, 2019, 24, 746.	3.8	7
211	Features in the NMR spectra of the aglycones of Agave spp. saponins. HMBC method for aglycone identification (HMAI). Phytochemical Analysis, 2021, 32, 38-61.	2.4	7
212	Acyl Derivatives of Eudesmanolides To Boost their Bioactivity: An Explanation of Behavior in the Cell Membrane Using a Molecular Dynamics Approach. ChemMedChem, 2021, 16, 1297-1307.	3.2	7
213	Encapsulation of Cynara Cardunculus Guaiane-type Lactones in Fully Organic Nanotubes Enhances Their Phytotoxic Properties. Journal of Agricultural and Food Chemistry, 2022, 70, 3644-3653.	5.2	7
214	Configuration of 1,10-epoxyguaianolides: stereochemistry of 1,10-epoxy-8α-hydroxyachillin. Journal of the Chemical Society Perkin Transactions 1, 1987, , 1641-1644.	0.9	6
215	Metabolites from <i>Withania aristata</i> with Potential Phytotoxic Activity. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	6
216	Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape. Agronomy, 2021, 11, 501.	3.0	6

#	Article	IF	CITATIONS
217	Synthesis of Pertyolides A, B, and C: A Synthetic Procedure to C17-Sesquiterpenoids and a Study of Their Phytotoxic Activity. Journal of Natural Products, 2021, 84, 2295-2302.	3.0	6
218	Characterization of three saponins from a fraction using 1D DOSY as a solvent signal suppression tool. Agabrittonosides E–F. Furostane Saponins from <i>Agave brittoniana</i> Trel. spp. <i>Brachypus</i> . Magnetic Resonance in Chemistry, 2010, 48, 350-355.	1.9	5
219	Operation Allelopathy: An Experiment Investigating an Alternative to Synthetic Agrochemicals. Journal of Chemical Education, 2014, 91, 570-574.	2.3	5
220	Structure–activity relationship studies of the phytotoxic properties of the diterpenic moiety of breviones. Pest Management Science, 2015, 71, 701-711.	3.4	5
221	Phytotoxicity of Triterpenes and Limonoids from the Rutaceae and Meliaceae. 5α,6β,8α,12α-Tetrahydro-28-norisotoonafolin – a Potent Phytotoxin from Toona ciliata. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	5
222	Enantioselective Total Syntheses of (<i>R</i>)―and (<i>S</i>)â€Naphthotectone, and Stereochemical Assignment of the Natural Product. European Journal of Organic Chemistry, 2016, 2016, 1599-1605.	2.4	5
223	Evaluation of the Phytotoxicity of <i>Urochloa humidicola</i> Roots by Bioassays and Microscopic Analysis. Characterization of New Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 4851-4864.	5.2	5
224	Are phytotoxic effects of. Australian Journal of Botany, 2021, 69, 174-183.	0.6	5
225	Agave Steroidal Saponins as Potential Bioherbicides. Agronomy, 2021, 11, 2404.	3.0	5
226	Metabolites from Withania aristata with potential phytotoxic activity. Natural Product Communications, 2010, 5, 1043-7.	0.5	5
227	The absolute configuration of heliespirone B, from sunflowerHelianthus annuus. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2104-o2105.	0.2	4
228	An easy access to bioactive 13-hydroxylated and 11,13-dihydroxylated sesquiterpene lactones (SLs) through Michael addition of a nucleophilic hydroxyl group. Tetrahedron, 2008, 64, 10996-11006.	1.9	4
229	Sesquiterpenes as Immunosuppressants. Transplantation, 2009, 88, S24-S30.	1.0	4
230	Multifunctionalised benzoxazinones in the systems Oryza sativa-Echinochloa crus-galli and Triticum aestivum-Avena fatua as natural-product-based herbicide leads. Pest Management Science, 2010, 66, 1137-1147.	3.4	4
231	Allelopathic properties of the fractions obtained from sunflower leaves using supercritical carbon dioxide: The effect of co-solvent addition. Journal of Supercritical Fluids, 2013, 82, 221-229.	3.2	4
232	Qualitative Study on the Production of the Allelochemicals Benzoxazinones by Inducing Polyploidy in Gramineae with Colchicine. Journal of Agricultural and Food Chemistry, 2018, 66, 3666-3674.	5.2	4
233	Preparation and Phytotoxicity Evaluation of 11,13-Dehydro <i>seco</i> -Guaianolides. Journal of Natural Products, 2019, 82, 2501-2508.	3.0	4
234	Synthesis of Vlasouliolides: A Pathway toward Guaiane–Eudesmane C ₁₇ /C ₁₅ Dimers by Photochemical and Michael Additions. Journal of Organic Chemistry, 2020, 85, 7322-7332.	3.2	4

#	Article	IF	CITATIONS
235	Absorption and Elimination of the Allelochemical MBOA by Weeds during Seedling Growth. Agronomy, 2021, 11, 471.	3.0	4
236	Mariolin, a germacranolide from Anacyclus radiatus. Phytochemistry, 1985, 24, 2447-2448.	2.9	3
237	Melampolides and cis,cis-germacranolides from Lecocarpus lecocarpoides. Phytochemistry, 1992, 32, 127-131.	2.9	3
238	Identification of Major Compounds Extracted by Supercritical Fluids from <i>Helianthus Annuus L</i> Leaves. Solvent Extraction Research and Development, 2011, 18, 55-68.	0.4	3
239	Sesquiterpenes in Fresh Food. , 2021, , 477-542.		3
240	Constituents of Calamintha ashei: Effects on Florida Sandhill Species. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	2
241	SAR studies of epoxycurcuphenol derivatives on leukemia CT-CD4 cells. Bioorganic and Medicinal Chemistry, 2012, 20, 6662-6668.	3.0	2
242	Synthesis of (±)-3,4-dimethoxybenzyl-4-methyloctanoate as a novel internal standard for capsinoid determination by HPLC-ESI-MS/MS(QTOF). Open Chemistry, 2018, 16, 87-94.	1.9	2
243	Search of New Tools for Weed Control Using <i>Piptocarpha rotundifolia</i> , a Dominant Species in the Cerrado. Journal of Agricultural and Food Chemistry, 2021, 69, 8684-8694.	5.2	2
244	Sesquiterpenes in Cereals and Spices. , 2020, , 1-63.		2
245	Dereplication of Bioactive Spirostane Saponins from Agave macroacantha. Journal of Natural Products, 2021, 84, 2904-2913.	3.0	2
246	Evaluation of the phytotoxic and antifungal activity of <scp>C₁₇</scp> â€sesquiterpenoids as potential biopesticides. Pest Management Science, 2022, 78, 4240-4251.	3.4	2
247	Toxicity and Anti-promastigote Activity of Benzoxazinoid Analogs Against Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum. Advanced Pharmaceutical Bulletin, 2020, 10, 119-124.	1.4	1
248	Bioactive Diterpenes from the Brazilian Native Plant (Moquiniastrum pulchrum) and Their Application in Weed Control. Molecules, 2021, 26, 4632.	3.8	1
249	Structure-activity relationship study of diterpenes for treatment of Alzheimer's disease. Quimica Nova, 0, , .	0.3	1
250	Quantification of Strigolactones. Methods in Molecular Biology, 2020, 2083, 199-208.	0.9	1
251	Sesquiterpenes in Fresh Food. , 2020, , 1-66.		1

Playing with chemistry: studies on Orobanche spp. Germination stimulants. , 2006, , 495-510.

#	Article	IF	CITATIONS
253	Rebuttal on Results from the FATEALLCHEM Project. Journal of Agricultural and Food Chemistry, 2007, 55, 1645-1647.	5.2	0
254	Preface: special issue Biocom12. Phytochemistry Reviews, 2013, 12, 579-580.	6.5	0
255	Special section: Biocom 12. Phytochemistry Letters, 2014, 8, 156-157.	1.2	Ο
256	Sesquiterpenes in Cereals and Spices. , 2021, , 543-605.		0
257	Variation Endogenus and Exogenous of Allelochemical 2.4-dihydroxy-7-metoxy-1.4-benzoxazin-3.(4 <i>H</i>)-one (DIMBOA) in Root Architecture of Maize (<i>Zea) Ti F</i>	TOa.b1 0.1	78 4 814 røB