Karim Labib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1850224/publications.pdf Version: 2024-02-01

KADIM LABIR

#	Article	IF	CITATIONS
1	Spt5 histone binding activity preserves chromatin during transcription by RNA polymerase II. EMBO Journal, 2022, 41, e109783.	7.8	14
2	CUL2 ^{LRR1} , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Reports, 2021, 22, e52164.	4.5	25
3	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease. Biochemical Journal, 2021, 478, 2445-2464.	3.7	32
4	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease. Biochemical Journal, 2021, 478, 2499-2515.	3.7	46
5	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Biochemical Journal, 2021, 478, 2517-2531.	3.7	49
6	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase. Biochemical Journal, 2021, 478, 2481-2497.	3.7	39
7	TIMELESSâ€TIPIN and UBXNâ€3 promote replisome disassembly during DNA replication termination in <i>Caenorhabditis elegans</i> . EMBO Journal, 2021, 40, e108053.	7.8	23
8	Reconstitution of human CMG helicase ubiquitylation by CUL2LRR1 and multiple E2 enzymes. Biochemical Journal, 2021, 478, 2825-2842.	3.7	4
9	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochemical Journal, 2021, 478, 2465-2479.	3.7	43
10	CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. ELife, 2020, 9, .	6.0	48
11	Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Molecular Cell, 2019, 73, 915-929.e6.	9.7	110
12	TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication. ELife, 2019, 8, .	6.0	57
13	LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nature Communications, 2018, 9, 728.	12.8	37
14	The Mcm2-Ctf4-Polα Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands. Molecular Cell, 2018, 72, 140-151.e3.	9.7	129
15	The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007453.	3.5	22
16	Histone H2Aâ€H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO Journal, 2018, 37, .	7.8	55
17	CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination andÂmitosis. Nature Cell Biology, 2017, 19, 468-479.	10.3	81
18	Ufd1-Npl4 Recruit Cdc48 for Disassembly of Ubiquitylated CMG Helicase at the End of Chromosome Replication. Cell Reports, 2017, 18, 3033-3042.	6.4	38

Karim Labib

#	Article	IF	CITATIONS
19	Targeting the Genomeâ€Stability Hub Ctf4 by Stapledâ€Peptide Design. Angewandte Chemie - International Edition, 2017, 56, 12866-12872.	13.8	22
20	Targeting the Genome‣tability Hub Ctf4 by Stapledâ€Peptide Design. Angewandte Chemie, 2017, 129, 13046-13052.	2.0	2
21	Chromosome Duplication in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 1027-1067.	2.9	323
22	Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase. Molecular Cell, 2016, 63, 385-396.	9.7	107
23	MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Molecular Cell, 2016, 63, 146-155.	9.7	297
24	The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genetics, 2016, 12, e1005843.	3.5	29
25	Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C.Âelegans Embryos. Cell Reports, 2015, 12, 405-417.	6.4	31
26	Tethering of SCFDia2 to the Replisome Promotes Efficient Ubiquitylation and Disassembly of the CMG Helicase. Current Biology, 2015, 25, 2254-2259.	3.9	37
27	A conserved Pollµ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Research, 2015, 43, 8830-8838.	14.5	48
28	A Ctf4 trimer couples the CMG helicase to DNA polymerase $\hat{I}\pm$ in the eukaryotic replisome. Nature, 2014, 510, 293-297.	27.8	186
29	Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science, 2014, 346, 1253596.	12.6	188
30	Eukaryotic Replisome Components Cooperate to Process Histones During Chromosome Replication. Cell Reports, 2013, 3, 892-904.	6.4	157
31	Dpb2 Integrates the Leading-Strand DNA Polymerase into the Eukaryotic Replisome. Current Biology, 2013, 23, 543-552.	3.9	123
32	Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO Journal, 2012, 31, 2195-2206.	7.8	116
33	A Conserved Motif in the C-terminal Tail of DNA Polymerase α Tethers Primase to the Eukaryotic Replisome. Journal of Biological Chemistry, 2012, 287, 23740-23747.	3.4	42
34	Replisome Stability at Defective DNA Replication Forks Is Independent of S Phase Checkpoint Kinases. Molecular Cell, 2012, 45, 696-704.	9.7	140
35	Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3554-3561.	4.0	82
36	How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?. Genes and Development, 2010, 24, 1208-1219.	5.9	312

Karim Labib

#	Article	IF	CITATIONS
37	The Amino-Terminal TPR Domain of Dia2 Tethers SCFDia2 to the Replisome Progression Complex. Current Biology, 2009, 19, 1943-1949.	3.9	69
38	A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome. EMBO Journal, 2009, 28, 2992-3004.	7.8	238
39	GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature Cell Biology, 2006, 8, 358-366.	10.3	696
40	Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO Journal, 2006, 25, 1753-1763.	7.8	124
41	Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes and Development, 2005, 19, 1905-1919.	5.9	245
42	Rapid Depletion of Budding Yeast Proteins by Fusion to a Heat-Inducible Degron. Science Signaling, 2004, 2004, pl8-pl8.	3.6	52
43	G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nature Cell Biology, 1999, 1, 415-422	10.3	187