
Kunihiro Yamaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rituximab in the real-world treatment of lupus nephritis: A retrospective cohort study in Japan. Modern Rheumatology, 2023, 33, 145-153.	1.8	6
2	Integrated safety analysis of filgotinib treatment for rheumatoid arthritis in patients from Japan over a median of 1.5 years. Modern Rheumatology, 2023, 33, 64-72.	1.8	2
3	Incidence and risk factors for herpes zoster in patients with rheumatoid arthritis receiving upadacitinib: a pooled analysis of six phase III clinical trials. Annals of the Rheumatic Diseases, 2022, 81, 206-213.	0.9	25
4	Safety of jakinibs: lessons from ORAL Surveillance. Rheumatology, 2022, 61, 4223-4225.	1.9	1
5	A Case of Rheumatoid Arthritis With Bilateral Shoulder Bursitis Accompanied by Gas Image. Modern Rheumatology Case Reports, 2022, , .	0.7	1
6	Human dendritic cell-derived osteoclasts with high bone resorption capacity and T cell stimulation ability. Bone, 2021, 142, 115616.	2.9	19
7	Thymus variants on imaging in patients with rheumatoid arthritis—Clinical and immunological significance. Rheumatology, 2021, 60, 5595-5600.	1.9	2
8	The Safety Profile of Upadacitinib in Patients with Rheumatoid Arthritis in Japan. Drug Safety, 2021, 44, 711-722.	3.2	15
9	Skeletal unloading reduces cluster of differentiation (CD) 38 expression in the bone marrow and osteoblasts of mice. Journal of Orthopaedic Science, 2020, 25, 331-337.	1.1	5
10	Efficacy and safety of upadacitinib in Japanese patients with rheumatoid arthritis (SELECT-SUNRISE): a placebo-controlled phase IIb/III study. Rheumatology, 2020, 59, 3303-3313.	1.9	41
11	自啱å…ç–«ç–¾æ,£æ²»ç™,ã®ç™ºå±•ãëèª2題. Drug Delivery System, 2020, 35, 376-383.	0.0	1
12	Tofacitinib for the treatment of rheumatoid arthritis: an update. Expert Review of Clinical Immunology, 2019, 15, 577-588.	3.0	21
13	Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology, 2019, 58, i4-i16.	1.9	111
14	Discontinuation of tofacitinib after achieving low disease activity in patients with rheumatoid arthritis: a multicentre, observational study. Rheumatology, 2017, 56, 1293-1301.	1.9	19
15	Herpes Zoster and Tofacitinib: Clinical Outcomes and the Risk of Concomitant Therapy. Arthritis and Rheumatology, 2017, 69, 1960-1968.	5.6	182
16	Benefit and Risk of Tofacitinib in the Treatment of Rheumatoid Arthritis: A Focus on Herpes Zoster. Drug Safety, 2016, 39, 823-840.	3.2	28
17	Janus kinase inhibitors for rheumatoid arthritis. Current Opinion in Chemical Biology, 2016, 32, 29-33.	6.1	112
18	Association of the multi-biomarker disease activity score with joint destruction in patients with rheumatoid arthritis receiving tumor necrosis factor-alpha inhibitor treatment in clinical practice. Modern Rheumatology, 2016, 26, 850-856.	1.8	14

Kunihiro Yamaoka

#	Article	IF	CITATIONS
19	Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. PLoS ONE, 2016, 11, e0153231.	2.5	46
20	Discontinuation of adalimumab after achieving remission in patients with established rheumatoid arthritis: 1-year outcome of the HONOR study. Annals of the Rheumatic Diseases, 2015, 74, 389-395.	0.9	149
21	Low complements and high titre of anti-Sm antibody as predictors of histopathologically proven silent lupus nephritis without abnormal urinalysis in patients with systemic lupus erythematosus. Rheumatology, 2015, 54, 405-412.	1.9	55
22	Local Delivery of Mesenchymal Stem Cells with Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold Suppress Arthritis in Rats. PLoS ONE, 2014, 9, e114621.	2.5	21
23	The possible mode of action of Tofacitinib, a JAK inhibitor. Inflammation and Regeneration, 2014, 34, 129-133.	3.7	1
24	Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions. International Journal of Molecular Sciences, 2014, 15, 21270-21285.	4.1	22
25	Tofacitinib, a JAK inhibitor, inhibits human B cell activation in vitro. Annals of the Rheumatic Diseases, 2014, 73, 2213-2215.	0.9	38
26	Effects of tofacitinib on lymphocytes in rheumatoid arthritis: relation to efficacy and infectious adverse events. Rheumatology, 2014, 53, 914-918.	1.9	40
27	IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent. Rheumatology, 2014, 53, 1282-1290.	1.9	52
28	Targeting the Janus kinases in rheumatoid arthritis: focus on tofacitinib. Expert Opinion on Pharmacotherapy, 2014, 15, 103-113.	1.8	17
29	The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Annals of the Rheumatic Diseases, 2014, 73, 2192-2198.	0.9	136
30	Dopamine D2-like receptor signaling suppresses human osteoclastogenesis. Bone, 2013, 56, 1-8.	2.9	45
31	Abatacept inhibits radiographic progression in patients with rheumatoid arthritis: a retrospective analysis of 6Âmonths of abatacept treatment in routine clinical practice. The ALTAIR study. Modern Rheumatology, 2013, , 1.	1.8	Ο
32	Janus kinase inhibitors in autoimmune diseases. Annals of the Rheumatic Diseases, 2013, 72, ii111-ii115.	0.9	350
33	JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical. Modern Rheumatology, 2013, 23, 415-424.	1.8	53
34	Dermal mast cell density in fingers reflects severity of skin sclerosis in systemic sclerosis. Modern Rheumatology, 2013, 23, 1151-1157.	1.8	16
35	Regulatory role of mesenchymal stem cells in osteoclast differentiation. Inflammation and Regeneration, 2013, 33, 217-222.	3.7	1
36	Role of JAKs in myeloid cells and autoimmune diseases. Inflammation and Regeneration, 2013, 33, 131-135.	3.7	0

Kunihiro Yamaoka

#	Article	IF	CITATIONS
37	The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferonâ€Î³ and interleukinâ€17 production by human CD4+ T cells. Arthritis and Rheumatism, 2012, 64, 1790-1798.	6.7	196
38	Mesenchymal stem cells: A new treatment tool for rheumatoid arthritis. Inflammation and Regeneration, 2012, 32, 188-192.	3.7	1
39	JAK inhibitor: tofacitinib, a new disease modifying anti-rheumatic drug. Inflammation and Regeneration, 2011, 31, 349-353.	3.7	1
40	Efficacy of combination therapy of anti-TNF-α antibody infliximab and methotrexate in refractory entero-Behçet's disease. Modern Rheumatology, 2011, 21, 184-191.	1.8	69
41	Jak and Syk: Emerging their relevance to the treatment of inflammatory diseases. Inflammation and Regeneration, 2011, 31, 237-244.	3.7	6
42	Jak inhibitor ; possibility and mechanism as a new disease modifying anti-rheumatic drug. Japanese Journal of Clinical Immunology, 2009, 32, 85-91.	0.0	11
43	A case of life-threatening refractory polychondritis successfully treated with combined intensive immunosuppressive therapy with methotrexate. Modern Rheumatology, 2007, 17, 144-147.	1.8	10
44	Clinical Images: Takayasu arteritis diagnosed by positron emission tomography. Arthritis and Rheumatism, 2007, 56, 2466-2466.	6.7	1
45	A case of life-threatening refractory polychondritis successfully treated with combined intensive immunosuppressive therapy with methotrexate. Modern Rheumatology, 2007, 17, 144-147.	1.8	9
46	Jak3 negatively regulates dendritic-cell cytokine production and survival. Blood, 2005, 106, 3227-3233.	1.4	55
47	The Janus kinases (Jaks). Genome Biology, 2004, 5, 253.	8.8	508
48	Overlap syndrome of polymyositis and progressive systemic sclerosis associated with interferon therapy for chronic hepatitis C. Japanese Journal of Rheumatology, 1999, 9, 259-265.	0.0	0
49	Overlap syndrome of polymyositis and progressive systemic sclerosis associated with interferon therapy for chronic hepatitis C. Japanese Journal of Rheumatology, 1999, 9, 259-265.	0.0	Ο
50	The combination of polymorphisms within interferon- $\hat{1}^3$ receptor 1 and receptor 2 associated with the risk of systemic lupus erythematosus. FEBS Letters, 1999, 453, 187-190.	2.8	56
51	Detection of polymorphisms within the human IL10 receptor cDNA gene sequence by RT-PCR RFLP. Immunogenetics, 1997, 46, 439-441.	2.4	8