List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848343/publications.pdf Version: 2024-02-01

		22153	34986
300	12,921	59	98
papers	citations	h-index	g-index
352	352	352	13232
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Applied Neuropsychology Adult, 2022, 29, 112-119.	1.2	18
2	First manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. Journal of Neurology, 2022, 269, 55-58.	3.6	54
3	Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 158-168.	1.9	7
4	Practice effects in genetic frontotemporal dementia and at-risk individuals: a GENFI study. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 336-339.	1.9	1
5	Seizure prevalence in neurodegenerative diseases—a study of autopsy proven cases. European Journal of Neurology, 2022, 29, 12-18.	3.3	6
6	A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain, 2022, 145, 1805-1817.	7.6	27
7	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	5.3	21
8	Different rates of cognitive decline in autosomal dominant and lateâ€onset Alzheimer disease. Alzheimer's and Dementia, 2022, 18, 1754-1764.	0.8	4
9	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	6.2	4
10	An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. Journal of Alzheimer's Disease, 2022, , 1-14.	2.6	3
11	XK-Associated McLeod Syndrome: Nonhematological Manifestations and Relation to VPS13A Disease. Transfusion Medicine and Hemotherapy, 2022, 49, 4-12.	1.6	11
12	Impact of Partial Volume Correction on [18F]GE-180 PET Quantification in Subcortical Brain Regions of Patients with Corticobasal Syndrome. Brain Sciences, 2022, 12, 204.	2.3	2
13	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
14	Dataâ€driven staging of genetic frontotemporal dementia using multiâ€modal <scp>MRI</scp> . Human Brain Mapping, 2022, 43, 1821-1835.	3.6	7
15	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.8	24
16	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	3.1	1
17	Anomia is present pre-symptomatically in frontotemporal dementia due to MAPT mutations. Journal of Neurology, 2022, 269, 4322-4332.	3.6	1
18	Serum <scp>Betaâ€Synuclein</scp> Is Higher in Down Syndrome and Precedes Rise of <scp>pTau181</scp> . Annals of Neurology, 2022, 92, 6-10.	5.3	9

#	Article	IF	CITATIONS
19	Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis. Antioxidants, 2022, 11, 76.	5.1	5
20	Ockham's razor, not a barber's weapon but a writer's tool. Brain, 2022, 145, 1870-1873.	7.6	3
21	Erysense, a Lab-on-a-Chip-Based Point-of-Care Device to Evaluate Red Blood Cell Flow Properties With Multiple Clinical Applications. Frontiers in Physiology, 2022, 13, 884690.	2.8	14
22	Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes. Alzheimer's Research and Therapy, 2022, 14, 62.	6.2	9
23	Longitudinal Cognitive Changes in Genetic Frontotemporal Dementia Within the GENFI Cohort. Neurology, 2022, 99, .	1.1	5
24	The BDNFVal66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Molecular Psychiatry, 2021, 26, 614-628.	7.9	61
25	In Vivo Assessment of Neuroinflammation in <scp>4â€Repeat</scp> Tauopathies. Movement Disorders, 2021, 36, 883-894.	3.9	37
26	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.8	36
27	Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimer's and Dementia, 2021, 17, 969-983.	0.8	31
28	Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12185.	2.4	11
29	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
30	Detection Gap of Right-Asymmetric Neuronal Degeneration by CERAD Test Battery in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 611595.	3.4	2
31	First symptom guides diagnosis and prognosis in neurodegenerative diseases—a retrospective study of autopsy proven cases. European Journal of Neurology, 2021, 28, 1801-1811.	3.3	11
32	Quantifying progression in primary progressive aphasia with structural neuroimaging. Alzheimer's and Dementia, 2021, 17, 1595-1609.	0.8	22
33	MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.	1.9	10
34	Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease. Brain, 2021, 144, 2176-2185.	7.6	66
35	Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology, 2021, 96, e2296-e2312.	1.1	52
36	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10

#	Article	IF	CITATIONS
37	Acanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification. Cells, 2021, 10, 788.	4.1	18
38	Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis. Acta Neuropathologica Communications, 2021, 9, 81.	5.2	19
39	Cortical [<scp>¹⁸F</scp>] <scp>PI</scp> â€2620 Binding Differentiates Corticobasal Syndrome Subtypes. Movement Disorders, 2021, 36, 2104-2115.	3.9	46
40	Binding characteristics of [¹⁸ F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2957-2972.	4.3	30
41	Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome. Frontiers in Aging Neuroscience, 2021, 13, 661284.	3.4	13
42	Living with global amnesia: self-established compensation strategies of a patient with severe memory impairment – a narrative report. Neurocase, 2021, 27, 287-296.	0.6	0
43	The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. Biomolecules, 2021, 11, 727.	4.0	21
44	Characterizing the Clinical Features and Atrophy Patterns of <i>MAPT</i> -Related Frontotemporal Dementia With Disease Progression Modeling. Neurology, 2021, 97, e941-e952.	1.1	29
45	Low-degree trisomy 21 mosaicism promotes early-onset Alzheimer disease. Neurobiology of Aging, 2021, 103, 147.e1-147.e5.	3.1	4
46	Motor speech disorders in the nonfluent, semantic and logopenic variants of primary progressive aphasia. Cortex, 2021, 140, 66-79.	2.4	10
47	Cardiac manifestation is evident in chorea-acanthocytosis but different from McLeod syndrome. Parkinsonism and Related Disorders, 2021, 88, 90-95.	2.2	4
48	"Huntington disease-like phenotype in a patient with ANO3 mutation―Expert commentary. Parkinsonism and Related Disorders, 2021, 90, 123-124.	2.2	1
49	Comment on "A New Allelic Variant in the PANK2 Gene in a Patient with Incomplete HARP Syndromeâ€. Journal of Movement Disorders, 2021, 14, 254-255.	1.3	0
50	F28â€Novel mutations and findings in a cohort of McLeod neuroacanthocytosis, an X-linked HD phenocopy. , 2021, , .		0
51	Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study. Neurobiology of Aging, 2021, 108, 155-167.	3.1	3
52	"Neuroacanthocytosis―– Overdue for a Taxonomic Update. Tremor and Other Hyperkinetic Movements, 2021, 11, 1.	2.0	34
53	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	2.7	28
54	Disease-related cortical thinning in presymptomatic granulin mutation carriers. NeuroImage: Clinical, 2021, 29, 102540.	2.7	8

#	Article	IF	CITATIONS
55	Cognitive reserve hypothesis in frontotemporal dementia: A FDG-PET study. Neurolmage: Clinical, 2021, 29, 102535.	2.7	13
56	Clinico-genetic findings in 509 frontotemporal dementia patients. Molecular Psychiatry, 2021, 26, 5824-5832.	7.9	23
57	A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Molecular Neurodegeneration, 2021, 16, 79.	10.8	9
58	Predicting disease progression in behavioral variant frontotemporal dementia. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12262.	2.4	4
59	Factors influencing atrophy progression in primary progressive aphasia. Alzheimer's and Dementia, 2021, 17, .	0.8	0
60	Detecting clinical progression from abnormal regional brain volumes at baseline in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia, 2021, 17, .	0.8	0
61	From brain volumes to subgroup classification in genetic mutation carriers for frontotemporal dementia: A cluster analysis in the GENFI study. Alzheimer's and Dementia, 2021, 17, .	0.8	0
62	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
63	Metabolic Correlates of Dopaminergic Loss in Dementia with Lewy Bodies. Movement Disorders, 2020, 35, 595-605.	3.9	42
64	TSPO PET With 18F-GE-180 to Differentiate Variants of Multiple Sclerosis. Clinical Nuclear Medicine, 2020, 45, e447-e448.	1.3	5
65	Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 975-984.	1.9	25
66	Abnormal pain perception is associated with thalamo-cortico-striatal atrophy in <i>C9orf72</i> expansion carriers in the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1325-1328.	1.9	12
67	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
68	Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Communications, 2020, 2, .	3.3	20
69	18 Fâ€Plâ€2620 tauâ€PET in corticobasal syndrome (ActiGliA cohort). Alzheimer's and Dementia, 2020, 16, e041469.	0.8	1
70	Trajectory of apathy, cognition and neural correlates in the decades before symptoms in frontotemporal dementia. Alzheimer's and Dementia, 2020, 16, e041821.	0.8	0
71	Neuropathological characteristics associated with a recently identified rare PSEN1 deletion mutation (F175del). Alzheimer's and Dementia, 2020, 16, e045048.	0.8	0
72	The Free Cued Selective Reminding Test detects episodic memory impairment in the presymptomatic period of familial frontotemporal dementia within the GENFI cohort. Alzheimer's and Dementia, 2020, 16, e045768.	0.8	0

#	Article	IF	CITATIONS
73	Seizures in Alzheimer's disease are highly recurrent and associated with a poor disease course. Journal of Neurology, 2020, 267, 2941-2948.	3.6	38
74	Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with <i>C9orf72</i> hexanucleotide repeat expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 503-511.	1.9	33
75	Identification of two compound heterozygous <i>VPS13A</i> large deletions in choreaâ€acanthocytosis only by protein and quantitative DNA analysis. Molecular Genetics & Genomic Medicine, 2020, 8, e1179.	1.2	5
76	Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 263-270.	1.9	106
77	Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 612-621.	1.9	55
78	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	5.3	19
79	Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's diseaseâ€informed machineâ€learning. Alzheimer's and Dementia, 2020, 16, 501-511.	0.8	47
80	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	2.4	26
81	Neurofilament light chain in serum is significantly increased in chorea-acanthocytosis. Parkinsonism and Related Disorders, 2020, 80, 28-31.	2.2	6
82	Neuroacanthocytosis in China: A Review of Published Reports. Tremor and Other Hyperkinetic Movements, 2020, 4, 248.	2.0	9
83	Eighth International Chorea–Acanthocytosis Symposium: Summary of Workshop Discussion and Action Points. Tremor and Other Hyperkinetic Movements, 2020, 7, 428.	2.0	1
84	18 F-PI2620 Tau-PET for Assessment of Heterogeneous Neuropathology in Corticobasal Syndrome. , 2020, 59, .		0
85	Subtype and stage inference identifies distinct atrophy patterns in genetic frontotemporal dementia that MAP onto specific MAPT mutations. Alzheimer's and Dementia, 2020, 16, e042996.	0.8	1
86	Value of FDG-PET as a Supporting Biomarker for Dementia with Lewy Bodies at Stages of Early Dopaminergic Loss. , 2020, 59, .		0
87	Dual-phase β-Amyloid PET for Assessment of Neuronal Injury and Amyloidosis in Corticobasal Syndrome. , 2020, 59, .		0
88	Pathoarchitectonics of the cerebral cortex in choreaâ€acanthocytosis and Huntington's disease. Neuropathology and Applied Neurobiology, 2019, 45, 230-243.	3.2	10
89	Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease. NeuroImage: Clinical, 2019, 24, 101949.	2.7	14
90	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	10.2	128

#	Article	IF	CITATIONS
91	PET Imaging of Astrogliosis and Tau Facilitates Diagnosis of Parkinsonian Syndromes. Frontiers in Aging Neuroscience, 2019, 11, 249.	3.4	30
92	Identification of a rare presenilin 1 single amino acid deletion mutation (F175del) with unusual amyloid-β processing effects. Neurobiology of Aging, 2019, 84, 241.e5-241.e11.	3.1	9
93	Clial Fibrillary Acidic Protein in Serum is Increased in Alzheimer's Disease and Correlates with Cognitive Impairment. Journal of Alzheimer's Disease, 2019, 67, 481-488.	2.6	171
94	Lexical retrieval treatment in primary progressive aphasia: An investigation of treatment duration in a heterogeneous case series. Cortex, 2019, 115, 133-158.	2.4	36
95	FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations. Translational Psychiatry, 2019, 9, 54.	4.8	28
96	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	4.2	33
97	Education modulates brain maintenance in presymptomatic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1124-1130.	1.9	23
98	Clinical, pathophysiological and genetic features of motor symptoms in autosomal dominant Alzheimer's disease. Brain, 2019, 142, 1429-1440.	7.6	36
99	Unraveling corticobasal syndrome and alien limb syndrome with structural brain imaging. Cortex, 2019, 117, 33-40.	2.4	17
100	Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. Journal of Psychiatric Research, 2019, 113, 137-140.	3.1	81
101	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	2.7	27
102	Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 4-10.	1.9	96
103	Life expectancy and mortality in chorea-acanthocytosis and McLeod syndrome. Parkinsonism and Related Disorders, 2019, 60, 158-161.	2.2	15
104	Acute frontal eye field infarction. Neurology, 2019, 92, 193-195.	1.1	0
105	Seizures as an early symptom of autosomal dominant Alzheimer's disease. Neurobiology of Aging, 2019, 76, 18-23.	3.1	27
106	The applause sign in frontotemporal lobar degeneration and related conditions. Journal of Neurology, 2019, 266, 330-338.	3.6	15
107	A longitudinal biomarker study of Patients with Corticobasal Syndrom: Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's disease (ActiGliA) – In vivo Imaging of Microglial Activation by TSPO PET. , 2019, 58, .		0
108	Combined in vivo PET imaging of astrogliosis and tau facilitates differential diagnosis of parkinsonian syndromes in correlation with the phenotype. , 2019, 58, .		0

#	Article	IF	CITATIONS
109	Recurring Facial Nerve Palsy. Deutsches Ärzteblatt International, 2019, 116, 701.	0.9	0
110	Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease. Brain, 2018, 141, 1186-1200.	7.6	83
111	Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing. Brain, 2018, 141, 1486-1500.	7.6	79
112	Subcortical neurodegeneration in chorea: Similarities and differences between chorea-acanthocytosis and Huntington's disease. Parkinsonism and Related Disorders, 2018, 49, 54-59.	2.2	11
113	FDGâ€₽ET in a Case of Very Lateâ€onset Huntington's Disease. Movement Disorders Clinical Practice, 2018, 5, 227-228.	1.5	1
114	Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome. European Journal of Medical Genetics, 2018, 61, 699-705.	1.3	50
115	A language-based sum score for the course and therapeutic intervention in primary progressive aphasia. Alzheimer's Research and Therapy, 2018, 10, 41.	6.2	8
116	Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 239-247.	1.9	89
117	P1â€497: CLINICAL CORRELATES OF LEWY BODY PATHOLOGY IN AUTOSOMAL DOMINANT ALZHEIMER DISEASE. Alzheimer's and Dementia, 2018, 14, P520.	0.8	0
118	F20â \in Life expectancy and mortality in neuroacanthocytosis. , 2018, , .		0
119	<scp>CSF</scp> progranulin increases in the course of Alzheimer's disease and is associated with <scp>sTREM</scp> 2, neurodegeneration and cognitive decline. EMBO Molecular Medicine, 2018, 10, .	6.9	64
120	O4â€O4â€O5: FIBERâ€TRACT–SPECIFIC DECLINE IN WHITEâ€MATTER INTEGRITY DURING THE ADULT LIFESPAN PRECLINICAL ALZHEIMER'S DISEASE: RESULTS FROM THE DALLAS LIFESPAN BRAIN STUDY AND DIAN. Alzheimer's and Dementia, 2018, 14, P1410.	AND 0.8	0
121	Alzheimer's disease in Down syndrome: An overlooked population for prevention trials. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 703-713.	3.7	63
122	P2â€628: RELATIONSHIP BETWEEN PHYSICAL ACTIVITY, COGNITION AND ALZHEIMER PATHOLOGY IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P982.	0.8	0
123	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
124	White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer's disease. Brain, 2018, 141, 3065-3080.	7.6	116
125	Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1427-1437.	0.8	51
126	Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology, 2018, 91, e1390-e1401.	1.1	85

#	Article	IF	CITATIONS
127	Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS ONE, 2018, 13, e0197329.	2.5	68
128	A Modified Reading the Mind in the Eyes Test Predicts Behavioral Variant Frontotemporal Dementia Better Than Executive Function Tests. Frontiers in Aging Neuroscience, 2018, 10, 11.	3.4	34
129	Atrophy in the Thalamus But Not Cerebellum Is Specific for C9orf72 FTD and ALS Patients – An Atlas-Based Volumetric MRI Study. Frontiers in Aging Neuroscience, 2018, 10, 45.	3.4	40
130	Evaluation of early-phase [18 F]-florbetaben PET acquisition in clinical routine cases. NeuroImage: Clinical, 2017, 14, 77-86.	2.7	91
131	Predicting primary progressive aphasias with support vector machine approaches in structural MRI data. NeuroImage: Clinical, 2017, 14, 334-343.	2.7	42
132	Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology, 2017, 88, 961-969.	1.1	73
133	Hippocampal sclerosis and mesial temporal lobe epilepsy in choreaâ€∎canthocytosis: a case with clinical, pathologic and genetic evaluation. Neuropathology and Applied Neurobiology, 2017, 43, 542-546.	3.2	16
134	Polyâ€ <scp>GP</scp> in cerebrospinal fluid links <i>C9orf72</i> â€associated dipeptide repeat expression to the asymptomatic phase of <scp>ALS</scp> / <scp>FTD</scp> . EMBO Molecular Medicine, 2017, 9, 859-868.	6.9	90
135	Heinrich Simon Frenkel (1860–1931). Journal of Neurology, 2017, 264, 1301-1303.	3.6	0
136	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	2.5	87
137	Response to "Neuroacanthocytosis: A case with unusual clinical features and novel response to treatment―by Wu et al Journal of the Neurological Sciences, 2017, 373, 347.	0.6	1
138	Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2239-2248.	6.4	15
139	Chorein Deficiency and Alzheimer Disease: An Intriguing, Yet Premature Speculation. Alzheimer Disease and Associated Disorders, 2017, 31, 80-81.	1.3	1
140	[P3–263]: MOTOR SYMPTOMS IN FAMILIAL ALZHEIMER's DISEASE: FREQUENCY, SEVERITY AND PREDICTIVE VALUE. Alzheimer's and Dementia, 2017, 13, P1043.	0.8	0
141	Cerebral Glucose Metabolism and Dopaminergic Function in Patients with Corticobasal Syndrome. Journal of Neuroimaging, 2017, 27, 255-261.	2.0	23
142	[O1–02–05]: GENOTYPIC VARIANCE MAY EXPLAIN THE BALANCE OF EARLY CORTICAL VERSUS STRIATAL AMYLOID DEPOSITION IN AUTOSOMAL DOMINANT AD. Alzheimer's and Dementia, 2017, 13, P187.	0.8	1
143	[O1–02–06]: ELEVATED CSF STREM2 IN AUTOSOMAL DOMINANTLY INHERITED ALZHEIMER's DISEASE ASSOCIATED WITH REGIONAL FIBER TRACT INJURY: RESULTS FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P188.	0.8	0
144	HyperCKemia instead of Hyperkalemia in Chorea-Acanthocytosis. Cellular Physiology and Biochemistry, 2017, 41, 1267-1268.	1.6	0

#	Article	IF	CITATIONS
145	[18F]-THK5351 PET Correlates with Topology and Symptom Severity in Progressive Supranuclear Palsy. Frontiers in Aging Neuroscience, 2017, 9, 440.	3.4	58
146	Eighth International Chorea-Acanthocytosis Symposium: Summary of Workshop Discussion and Action Points. Tremor and Other Hyperkinetic Movements, 2017, 7, 428.	2.0	2
147	A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. Blood, 2016, 128, 2976-2987.	1.4	47
148	Early changes in CSF sTREM2 in dominantly inherited Alzheimer's disease occur after amyloid deposition and neuronal injury. Science Translational Medicine, 2016, 8, 369ra178.	12.4	211
149	O5-02-01: Longitudinal Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease: The Dominantly Inherited Alzheimer Network. , 2016, 12, P378-P379.		0
150	O5â€02â€02: Personality Characteristics and Alterations in Familial Alzheimer's Disease in the Dominantly Inherited Alzheimer Network (DIAN). Alzheimer's and Dementia, 2016, 12, P379.	0.8	1
151	Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia. Cortex, 2016, 83, 124-135.	2.4	21
152	Applied multimodal diagnostics in a case of presenile dementia. BMC Neurology, 2016, 16, 131.	1.8	3
153	Neurological manifestations of autosomal dominant familial Alzheimer's disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurology, The, 2016, 15, 1317-1325.	10.2	87
154	A longitudinal linguistic analysis of written text production in a case of semantic variant primary progressive aphasia. Journal of Neurolinguistics, 2016, 39, 26-37.	1.1	6
155	slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation. Blood, 2015, 126, 2601-2610.	1.4	116
156	Diagnostic Value of Subjective Memory Complaints Assessed with a Single Item in Dominantly Inherited Alzheimer's Disease: Results of the DIAN Study. BioMed Research International, 2015, 2015, 1-7.	1.9	7
157	Factors Associated With the Onset and Persistence of Post–Lumbar Puncture Headache. JAMA Neurology, 2015, 72, 325.	9.0	59
158	The association of aphasia and right-sided motor impairment in corticobasal syndrome. Journal of Neurology, 2015, 262, 2241-2246.	3.6	9
159	Occurrence of the "applause sign―in patients with amyotrophic lateral sclerosis. Clinical Neurology and Neurosurgery, 2015, 137, 8-10.	1.4	4
160	Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease. Neurology, 2015, 85, 790-798.	1.1	27
161	Oligoclonal bands in hereditary diffuse leukencephalopathy with spheroids. European Journal of Neurology, 2015, 22, e48-e48.	3.3	0
162	Three novel presenilin 1 mutations marking the wide spectrum of age at onset and clinical patterns in familial Alzheimer's disease. Journal of Neural Transmission, 2015, 122, 1715-1719.	2.8	8

#	Article	IF	CITATIONS
163	Local feature suppression effect in face and non-face stimuli. Psychological Research, 2015, 79, 194-205.	1.7	4
164	Long-term follow-up in primary progressive aphasia: Clinical course and health care utilisation. Aphasiology, 2014, 28, 981-992.	2.2	41
165	The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 2014, 56, 73-84.	2.4	204
166	Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala's nucleus. Psychiatry Research - Neuroimaging, 2014, 221, 187-194.	1.8	25
167	Diffuse leukoencephalopathy with spheroids: Biopsy findings and a novel mutation. Clinical Neurology and Neurosurgery, 2014, 122, 113-115.	1.4	10
168	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
169	Symptom onset in autosomal dominant Alzheimer disease. Neurology, 2014, 83, 253-260.	1.1	391
170	Genetic Heterogeneity in Alzheimer Disease and Implications for Treatment Strategies. Current Neurology and Neuroscience Reports, 2014, 14, 499.	4.2	70
171	Neuroacanthocytosis in china: a review of published reports. Tremor and Other Hyperkinetic Movements, 2014, 4, 248.	2.0	9
172	A Panâ€ <scp>E</scp> uropean Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
173	Head drops are also observed in advanced Huntington disease. Parkinsonism and Related Disorders, 2013, 19, 569-570.	2.2	5
174	Preclinical trials in autosomal dominant AD: Implementation of the DIAN-TU trial. Revue Neurologique, 2013, 169, 737-743.	1.5	122
175	Mineral deposition on magnetic resonance imaging in chorea-acanthocytosis: A pathogenic link with pantothenate kinase-associated neurodegeneration?. Neurology India, 2013, 61, 169.	0.4	4
176	Atypical parkinsonism due to a <i>D202N</i> Gerstmannâ€ <scp>S</scp> trässlerâ€ <scp>S</scp> cheinker prion protein mutation: First in vivo diagnosed case. Movement Disorders, 2013, 28, 241-245.	3.9	14
177	Alterations of Red Cell Membrane Properties in Nneuroacanthocytosis. PLoS ONE, 2013, 8, e76715.	2.5	22
178	Short and Long Term Outcome of Bilateral Pallidal Stimulation in Chorea-Acanthocytosis. PLoS ONE, 2013, 8, e79241.	2.5	44
179	Mutation in the <i>CHAC</i> gene in a family of autosomal dominant chorea–acanthocytosis. Neurology, 2012, 79, 198-199.	1.1	2
180	A PATIENT WITH CHOREA-ACANTHOCYTOSIS AND DILATED CARDIOMYOPATHY. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A14.4-A15.	1.9	0

#	Article	IF	CITATIONS
181	Huntington's disease: new aspects on phenotype and genotype. Parkinsonism and Related Disorders, 2012, 18, S107-S109.	2.2	9
182	The chorea of McLeod syndrome: Progression to hypokinesia. Movement Disorders, 2012, 27, 1701-1702.	3.9	11
183	Computational Identification of Phospho-Tyrosine Sub-Networks Related to Acanthocyte Generation in Neuroacanthocytosis. PLoS ONE, 2012, 7, e31015.	2.5	19
184	Autosomal recessive transmission of chorea-acanthocytosis confirmed. Acta Neuropathologica, 2012, 123, 905-906.	7.7	15
185	Wildervanck's syndrome and mirror movements: a congenital disorder of axon migration?. Journal of Neurology, 2012, 259, 761-763.	3.6	9
186	Brain, blood, and iron: Perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiology of Disease, 2012, 46, 607-624.	4.4	39
187	A novel mutation in CACNA1A associated with hemiplegic migraine, cerebellar dysfunction and late-onset cognitive decline. Journal of the Neurological Sciences, 2011, 300, 160-163.	0.6	25
188	Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson's disease. Journal of the Neurological Sciences, 2011, 310, 261-266.	0.6	52
189	Bilateral temporal lobe epilepsy confirmed with intracranial EEG in chorea-acanthocytosis. Seizure: the Journal of the British Epilepsy Association, 2011, 20, 340-342.	2.0	18
190	Clinical and genetic analysis of 29 Brazilian patients with Huntington's disease-like phenotype. Arquivos De Neuro-Psiquiatria, 2011, 69, 419-423.	0.8	12
191	Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood, 2011, 118, 5652-5663.	1.4	73
192	Chorea-Acanthocytosis Genotype in the Original Critchley Kentucky Neuroacanthocytosis Kindred. Archives of Neurology, 2011, 68, 1330.	4.5	11
193	Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Developmental Medicine and Child Neurology, 2011, 53, 179-186.	2.1	43
194	Shape alterations in the striatum in chorea-acanthocytosis. Psychiatry Research - Neuroimaging, 2011, 192, 29-36.	1.8	49
195	4-Aminopyridine improves gait variability in cerebellar ataxia due to CACNA 1A mutation. Journal of Neurology, 2011, 258, 1708-1711.	3.6	39
196	Neuroacanthocytosis Syndromes. Orphanet Journal of Rare Diseases, 2011, 6, 68.	2.7	209
197	Is improvement in the quality of life after subthalamic nucleus stimulation in Parkinson's disease predictable?. Movement Disorders, 2011, 26, 2516-2521.	3.9	71
198	The neuropsychiatry of neuroacanthocytosis syndromes. Neuroscience and Biobehavioral Reviews, 2011, 35, 1275-1283.	6.1	45

#	Article	IF	CITATIONS
199	Neuroacanthocytosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 100, 141-151.	1.8	32
200	CSF tau proteins in differential diagnosis of dementia. Translational Neuroscience, 2010, 1, 43-48.	1.4	8
201	Loss of word-meaning with spared object semantics in a case of mixed primary progressive aphasia. Brain and Language, 2010, 113, 96-100.	1.6	7
202	Tongue protrusion and feeding dystonia: A hallmark of choreaâ€acanthocytosis. Movement Disorders, 2010, 25, 127-129.	3.9	59
203	Characteristic head drops and axial extension in advanced choreaâ€acanthocytosis. Movement Disorders, 2010, 25, 1487-1491.	3.9	54
204	Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson's disease. Movement Disorders, 2010, 25, 1583-1589.	3.9	68
205	Magnetic resonance spectroscopy in two siblings with choreaâ€acanthocytosis. Movement Disorders, 2010, 25, 2894-2897.	3.9	7
206	Mirror movements in healthy humans across the lifespan: effects of development and ageing. Developmental Medicine and Child Neurology, 2010, 52, 1106-1112.	2.1	69
207	Validation of the German Revised Addenbrooke's Cognitive Examination for Detecting Mild Cognitive Impairment, Mild Dementia in Alzheimer's Disease and Frontotemporal Lobar Degeneration. Dementia and Geriatric Cognitive Disorders, 2010, 29, 448-456.	1.5	53
208	Normdaten zur ErgÃ ¤ zung deutscher WortanfÃ ¤ ge. Zeitschrift Für Neuropsychologie = Journal of Neuropsychology, 2010, 21, 17-23.	0.6	3
209	DEVELOPMENT OF MESIAL TEMPORAL LOBE EPILEPSY IN CHOREA-ACANTHOCYTOSIS. Neurology, 2009, 73, 1419-1422.	1.1	29
210	The iso-effect: Is there specific learning of Tower of London iso-problems?. Thinking and Reasoning, 2009, 15, 237-249.	3.2	9
211	Reply: Choreaâ€acanthocytosis: Report of two Brazilian cases. Movement Disorders, 2009, 24, 1254-1254.	3.9	1
212	Deep brain stimulation in chorea acanthocytosis. Movement Disorders, 2009, 24, 1546-1547.	3.9	30
213	Dominant transmission of chorea-acanthocytosis with VPS13A mutations remains speculative. Acta Neuropathologica, 2009, 117, 95-96.	7.7	13
214	A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles. Information Sciences, 2009, 179, 2934-2947.	6.9	15
215	Pick-Komplex und andere fokale Hirnatrophien. , 2009, , 123-139.		1
216	Automatic striatal volumetry allows for identification of patients with chorea-acanthocytosis at single subject level. Journal of Neural Transmission, 2008, 115, 1393-1400.	2.8	27

#	Article	IF	CITATIONS
217	An episode of geniospasm in sleep: Toward new insights into pathophysiology?. Movement Disorders, 2008, 23, 274-276.	3.9	9
218	Adolescent obsessive compulsive disorder heralding choreaâ€acanthocytosis. Movement Disorders, 2008, 23, 422-425.	3.9	24
219	Choreaâ€acanthocytosis: Report of two Brazilian cases. Movement Disorders, 2008, 23, 2090-2093.	3.9	16
220	Postoperative amnesic state with impairment of static visual perception. European Journal of Neurology, 2008, 15, e44-e45.	3.3	2
221	Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurology, The, 2008, 7, 605-614.	10.2	582
222	Neuroacanthocytosis Syndromes â \in " A Current Overview. , 2008, , 3-20.		2
223	Volumetric Neuroimaging in Neuroacanthocytosis. , 2008, , 175-185.		2
224	Neuropathology of Chorea-Acanthocytosis. , 2008, , 187-195.		7
225	Cerebral Involvement in McLeod Syndrome: The First Autopsy Revisited. , 2008, , 205-215.		5
226	"Virtual Neuroacanthocytosis Instituteâ€: A Look Forward. , 2008, , 287-292.		0
227	Neuroacanthocytosis. Clinics, 2008, 63, 135.	1.5	0
228	Sleep Disorders in Neuroacanthocytosis. , 2008, , 249-253.		0
229	McLeod myopathy revisited: more neurogenic and less benign. Brain, 2007, 130, 3285-3296.	7.6	64
230	Neurologic phenotypes associated with acanthocytosis. Neurology, 2007, 68, 92-98.	1.1	155
231	Obsessive-compulsive Disorders Due to Neuroacanthocytosis Treated with Citalopram. Pharmacopsychiatry, 2007, 40, 132-132.	3.3	0
232	Questions on the Movement of the Human Eye (Part II). Strabismus, 2007, 15, 221-225.	0.7	0
233	Diagnostic evaluation of clinically normal subjects with chronic hyperCKemia. Neurology, 2007, 68, 535-536.	1.1	5
234	1.309 Clinical and molecular studies of patients screened for Huntington's disease in a movement disorders clinic from Brazil. Parkinsonism and Related Disorders, 2007, 13, S79.	2.2	0

#	Article	IF	CITATIONS
235	Questions on the Movement of the Human Eye (Part I). Strabismus, 2007, 15, 119-125.	0.7	0
236	Recognition of Facial Expressions of Different Emotional Intensities in Patients with Frontotemporal Lobar Degeneration. Behavioural Neurology, 2007, 18, 31-36.	2.1	51
237	Phenotypic variation among brothers with the McLeod neuroacanthocytosis syndrome. Movement Disorders, 2007, 22, 244-247.	3.9	38
238	Phenotypic variability of a distinct deletion in McLeod syndrome. Movement Disorders, 2007, 22, 1358-1361.	3.9	23
239	McLeod syndrome: a neurohaematological disorder. Vox Sanguinis, 2007, 93, 112-121.	1.5	59
240	McLeod phenotype without the McLeod syndrome. Transfusion, 2007, 47, 299-305.	1.6	37
241	Antisocial behaviour and neuroacanthocytosis. International Journal of Clinical Practice, 2007, 61, 1419-1419.	1.7	1
242	Brain imaging and neuropsychology in late-onset dementia due to a novel mutation (R93C) of valosin-containing protein. , 2007, 26, 232-240.		25
243	Bernhard von Gudden, Neuro-Ophthalmology and the Munich School of Neuroanatomy and Psychiatry. Strabismus, 2006, 14, 211-216.	0.7	5
244	Head of the caudate nucleus is most vulnerable in chorea–acanthocytosis: A voxel-based morphometry study. Movement Disorders, 2006, 21, 1728-1731.	3.9	62
245	Developments in neuroacanthocytosis: Expanding the spectrum of choreatic syndromes. Movement Disorders, 2006, 21, 1794-1805.	3.9	44
246	The Challenge of Axonal Path-Finding. Strabismus, 2006, 14, 95-99.	0.7	4
247	Neuroacanthocytosis. Current Opinion in Neurology, 2005, 18, 386-392.	3.6	84
248	Quantitative evaluation of mirror movements in adults with focal brain lesions. European Journal of Neurology, 2005, 12, 964-975.	3.3	19
249	Identification of a VPS13A founder mutation in French Canadian families with chorea-acanthocytosis. Neurogenetics, 2005, 6, 151-158.	1.4	36
250	Eye Movements in Chorea-Acanthocytosis. , 2005, 46, 1979.		34
251	The Pattern of Cognitive Performance in CADASIL: A Monogenic Condition Leading to Subcortical Ischemic Vascular Dementia. American Journal of Psychiatry, 2005, 162, 2078-2085.	7.2	141

252 Kognitive Neurologie und Neuropsychologie. , 2005, , 41-82.

#	Article	IF	CITATIONS
253	Neuroacanthocytosis: new developments in a neglected group of dementing disorders. Journal of the Neurological Sciences, 2005, 229-230, 171-186.	0.6	77
254	White matter abnormalities on MRI in neuroacanthocytosis. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1200-1201.	1.9	37
255	Volitional facial palsy after a vascular lesion of the supplementary motor area. Neurology, 2004, 63, 756-757.	1.1	9
256	Aging is associated with increased collagen type IV accumulation in the basal lamina of human cerebral microvessels. BMC Neuroscience, 2004, 5, 37.	1.9	72
257	Chorein detection for the diagnosis of choreaâ€acanthocytosis. Annals of Neurology, 2004, 56, 299-302.	5.3	186
258	Neuroacanthocytosis Syndromes: What Links Red Blood Cells and Neurons?. , 2004, , 1-14.		5
259	Cognitive and Neuropsychiatric Findings in McLeod Syndrome and in Chorea-Acanthocytosis. , 2004, , 95-115.		8
260	Medial Prefrontal and Subcortical Mechanisms Underlying the Acquisition of Motor and Cognitive Action Sequences in Humans. Neuron, 2002, 35, 371-381.	8.1	77
261	Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17. Magnetic Resonance in Medicine, 2002, 48, 735-738.	3.0	151
262	Clinical features and molecular bases of neuroacanthocytosis. Journal of Molecular Medicine, 2002, 80, 475-491.	3.9	174
263	Karl Friedrich Scheid (1906-1945). Der Nervenarzt, 2002, 73, 1130-1131.	5.0	2
264	Prosopagnosia after unilateral right cerebral infarction. Journal of Neurology, 2002, 249, 933-935.	3.6	32
265	Is transient global amnesia related to endogenous benzodiazepines?. Journal of Neurology, 2002, 249, 628-628.	3.6	9
266	Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. European Journal of Human Genetics, 2002, 10, 773-781.	2.8	172
267	Quantification of brain lesions using interactive automated software. Behavior Research Methods, 2002, 34, 6-18.	1.3	79
268	The chorea of McLeod syndrome. Movement Disorders, 2001, 16, 882-889.	3.9	48
269	McLeod neuroacanthocytosis: Genotype and phenotype. Annals of Neurology, 2001, 50, 755-764.	5.3	244
270	A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nature Genetics, 2001, 28, 119-120.	21.4	357

#	Article	IF	CITATIONS
271	Reduction of striatal glucose metabolism in McLeod choreoacanthocytosis. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70, 517-520.	1.9	38
272	Primary diffuse leptomeningeal gliomatosis: unusual MRI with non-enhancing nodular lesions on the cerebellar surface and spinal leptomeningeal enhancement. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 69, 385-388.	1.9	22
273	Polyradiculitis, Perimyocarditis, and Nephrotic Syndrome: Unusual Manifestations of Infection Due to Listeria monocytogenes. Clinical Infectious Diseases, 1999, 28, 152-153.	5.8	4
274	Dipole source analysis in persistent mirror movements. Brain Topography, 1999, 12, 49-60.	1.8	12
275	Central mechanisms in human enhanced physiological tremor. Neuroscience Letters, 1998, 241, 135-138.	2.1	75
276	Persistent mirror movements: functional MR imaging of the hand motor cortex Radiology, 1997, 203, 545-552.	7.3	67
277	Chorea-Acanthocytosis: Genetic Linkage to Chromosome 9q21. American Journal of Human Genetics, 1997, 61, 899-908.	6.2	126
278	Lyme neuroborreliosis disguised as normal pressure hydrocephalus. Neurology, 1996, 46, 1743-1745.	1.1	37
279	Deactivation of human visual cortex during involuntary ocular oscillations. Brain, 1996, 119, 101-110.	7.6	215
280	Persistent mirror movements: force and timing of ?mirroring? are task-dependent. Experimental Brain Research, 1995, 104, 126-34.	1.5	19
281	Movement-related cortical potentials in persistent mirror movements. Electroencephalography and Clinical Neurophysiology, 1995, 95, 350-358.	0.3	29
282	Neuropsychologische Befunde bei McLeod-Neuro-akanthozytose. Verhandlungen Der Deutschen Gesellschaft Für Neurologie, 1995, , 426-429.	0.0	0
283	Bilaterale bewegungs-korrelierte kortikale Potentiale bei erblichen spiegelbildlichen Mitbewegungen (Mirror-Movements). Verhandlungen Der Deutschen Gesellschaft FA¼r Neurologie, 1995, , 146-149.	0.0	0
284	Olfactory function in patients with hypogonadotropic hypogonadism: an all-or-none phenomenon?. Chemical Senses, 1994, 19, 57-69.	2.0	18
285	Vestibular cortex lesions affect the perception of verticality. Annals of Neurology, 1994, 35, 403-412.	5.3	386
286	Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell, 1994, 77, 869-880.	28.9	272
287	Kallman syndrome versus idiopathic hypogonadotropic hypogonadism at MR imaging Radiology, 1994, 191, 53-57.	7.3	71
288	Cerebral involvement in McLeod syndrome. Neurology, 1994, 44, 117-117.	1.1	45

#	Article	IF	CITATIONS
289	Geniospasm: Hereditary chin trembling. Movement Disorders, 1993, 8, 335-338.	3.9	64
290	Motor recovery following capsular stroke. Brain, 1993, 116, 369-382.	7.6	341
291	The Meaning of Sherlock Holmes. Archives of Neurology, 1992, 49, 350-350.	4.5	1
292	McLeod syndrome: a distinct form of neuroacanthocytosis. Journal of Neurology, 1992, 239, 302-306.	3.6	98
293	Cortically evoked motor responses in patients with Xp22.3-linked Kallmann's syndrome and in female gene carriers. Annals of Neurology, 1992, 31, 299-304.	5.3	78
294	Motor responses after transcranial electrical stimulation of cerebral hemispheres with a degenerated pyramidal tract. Annals of Neurology, 1991, 29, 646-650.	5.3	84
295	Tracing of Neuronal Connections in the Human Brain by Magnetic Resonance Imaging in vivo. European Journal of Neuroscience, 1990, 2, 112-115.	2.6	83
296	Normal dystrophin in McLeod myopathy. Annals of Neurology, 1990, 28, 720-722.	5.3	20
297	Aneurysms and vacuolar degeneration of cerebral arteries in late-onset acid maltase deficiency. Journal of the Neurological Sciences, 1990, 98, 169-183.	0.6	74
298	The Dream King's Psychiatrist Bernhard von Gudden (1824-1886). Archives of Neurology, 1989, 46, 1349.	4.5	13
299	Alzheimer: Wie man nach einer kausalen Therapie sucht. , 0, , .		0
300	Patterns and implications of neurological examination findings in autosomal dominant Alzheimer disease. Alzheimer's and Dementia, 0, , .	0.8	2