
Alegria Carrasco Pancorbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847834/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of the metabolic profile of virgin olive oil during deep-frying: Assessing the transfer of bioactive compounds to the fried food. Food Chemistry, 2022, 380, 132205.	8.2	8
2	Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants, 2022, 11, 558.	5.1	24
3	Singular Olive Oils from a Recently Discovered Spanish North-Western Cultivar: An Exhaustive 3-Year Study of Their Chemical Composition and In-Vitro Antidiabetic Potential. Antioxidants, 2022, 11, 1233.	5.1	3
4	Prolonged on-tree maturation vs. cold storage of Hass avocado fruit: Changes in metabolites of bioactive interest at edible ripeness. Food Chemistry, 2022, 394, 133447.	8.2	4
5	Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: Characterization studies, agro-technological investigations and assessment of healthy properties. TrAC - Trends in Analytical Chemistry, 2021, 135, 116153.	11.4	14
6	Metabolomic approaches applied to food authentication: from data acquisition to biomarkers discovery. , 2021, , 331-378.		1
7	Application of the INFOGEST Standardized Method to Assess the Digestive Stability and Bioaccessibility of Phenolic Compounds from Galician Extra-Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2021, 69, 11592-11605.	5.2	14
8	From Green Technology to Functional Olive Oils: Assessing the Best Combination of Olive Tree-Related Extracts with Complementary Bioactivities. Antioxidants, 2021, 10, 202.	5.1	6
9	Caerulines A and B, Flavonol Diacylglycosides from <i>Persea caerulea</i> . ACS Omega, 2021, 6, 32631-32636.	3.5	1
10	Preliminary Discrimination of Commercial Extra Virgin Olive Oils from Brazil by Geographical Origin and Olive Cultivar: A Call for Broader Investigations. Proceedings (mdpi), 2021, 70, 57.	0.2	0
11	Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3528-3573.	11.7	27
12	Evaluating Quality Parameters, the Metabolic Profile, and Other Typical Features of Selected Commercial Extra Virgin Olive Oils from Brazil. Molecules, 2020, 25, 4193.	3.8	8
13	Effect of olive ripening degree on the antidiabetic potential of biophenols-rich extracts of Brava Gallega virgin olive oils. Food Research International, 2020, 137, 109427.	6.2	8
14	Production of Amphidinols and Other Bioproducts of Interest by the Marine Microalga <i>Amphidinium carterae</i> Unraveled by Nuclear Magnetic Resonance Metabolomics Approach Coupled to Multivariate Data Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 9667-9682.	5.2	25
15	Characterization of New Olive Fruit Derived Products Obtained by Means of a Novel Processing Method Involving Stone Removal and Dehydration with Zero Waste Generation. Journal of Agricultural and Food Chemistry, 2019, 67, 9295-9306.	5.2	14
16	Cardioprotective Effect of a Virgin Olive Oil Enriched with Bioactive Compounds in Spontaneously Hypertensive Rats. Nutrients, 2019, 11, 1728.	4.1	26
17	Study of the minor fraction of virgin olive oil by a multi-class GC–MS approach: Comprehensive quantitative characterization and varietal discrimination potential. Food Research International, 2019, 125, 108649.	6.2	17
18	The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Food Research International, 2019, 116, 447-454.	6.2	26

#	Article	IF	CITATIONS
19	Evaluating the reliability of specific and global methods to assess the phenolic content of virgin olive oil: Do they drive to equivalent results?. Journal of Chromatography A, 2019, 1585, 56-69.	3.7	29
20	Exploring the Capability of LCâ€MS and GCâ€MS Multiâ€Class Methods to Discriminate Virgin Olive Oils from Different Geographical Indications and to Identify Potential Origin Markers. European Journal of Lipid Science and Technology, 2019, 121, 1800336.	1.5	29
21	Deep insight into the minor fraction of virgin olive oil by using LC-MS and GC-MS multi-class methodologies. Food Chemistry, 2018, 261, 184-193.	8.2	51
22	Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Research International, 2018, 106, 558-567.	6.2	35
23	A metabolic fingerprinting approach based on selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics: A reliable tool for Mediterranean origin-labeled olive oils authentication. Food Research International, 2018, 106, 233-242.	6.2	34
24	Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Critical Reviews in Food Science and Nutrition, 2018, 58, 832-857.	10.3	63
25	Development and validation of LC-MS-based alternative methodologies to GC–MS for the simultaneous determination of triterpenic acids and dialcohols in virgin olive oil. Food Chemistry, 2018, 239, 631-639.	8.2	17
26	Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil. Food Chemistry, 2018, 242, 362-368.	8.2	31
27	Separation and Determination of Some of the Main Cholesterol-Related Compounds in Blood by Gas Chromatography-Mass Spectrometry (Selected Ion Monitoring Mode). Separations, 2018, 5, 17.	2.4	4
28	Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS) Tj ETQq0 0 C) i gB T /Ov	er sa ck 10 Tf
29	Establishing the Phenolic Composition of Olea europaea L. Leaves from Cultivars Grown in Morocco as a Crucial Step Towards Their Subsequent Exploitation. Molecules, 2018, 23, 2524.	3.8	27
30	Development of a folic acid molecularly imprinted polymer and its evaluation as a sorbent for dispersive solid-phase extraction by liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2018, 1576, 26-33.	3.7	27
31	Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food and Chemical Toxicology, 2018, 119, 73-85.	3.6	38
32	Avocado fruit— Persea americana. , 2018, , 37-48.		31
33	Nutraceutical Potential of Phenolics from $\hat{a} \in 2$ Brava $\hat{a} \in 2$ and $\hat{a} \in 2$ Mansa $\hat{a} \in 2$ Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of $\hat{a} \in 2$ Picual $\hat{a} \in 2$ and $\hat{a} \in 2$ Cornicabra $\hat{a} \in 2$. Molecules, 2018, 23, 722.	3.8	18
34	Interactions Between Hammer Mill Crushing Variables and Malaxation Time During Continuous Olive Oil Extraction. European Journal of Lipid Science and Technology, 2018, 120, 1800097.	1.5	9
35	Metabolic profiling approach to determine phenolic compounds of virgin olive oil by direct injection and liquid chromatography coupled to mass spectrometry. Food Chemistry, 2017, 231, 374-385.	8.2	24
36	Phenolic Compounds Profiling of Virgin Olive Oils from Different Varieties Cultivated in Mendoza, Argentina, by Using Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 8184-8195.	5.2	20

#	Article	IF	CITATIONS
37	Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chemistry, 2017, 215, 245-255.	8.2	93
38	In-Depth Two-Year Study of Phenolic Profile Variability among Olive Oils from Autochthonous and Mediterranean Varieties in Morocco, as Revealed by a LC-MS Chemometric Profiling Approach. International Journal of Molecular Sciences, 2017, 18, 52.	4.1	22
39	Potential of LC Coupled to Fluorescence Detection in Food Metabolomics: Determination of Phenolic Compounds in Virgin Olive Oil. International Journal of Molecular Sciences, 2016, 17, 1627.	4.1	8
40	A first approach towards the development of geographical origin tracing models for North Moroccan olive oils based on triacylglycerols profiles. European Journal of Lipid Science and Technology, 2016, 118, 1223-1235.	1.5	14
41	Flavonoid glycosides from <i>Persea caerulea</i> . Unraveling their interactions with SDSâ€micelles through matrixâ€essisted DOSY, PGSE, mass spectrometry, and NOESY. Magnetic Resonance in Chemistry, 2016, 54, 718-728.	1.9	4
42	Targeted LC-MS Approach to Study the Evolution over the Harvesting Season of Six Important Metabolites in Fruits from Different Avocado Cultivars. Food Analytical Methods, 2016, 9, 3479-3491.	2.6	9
43	Phenolic constituents of leaves from Persea caerulea Ruiz & Pav; Mez (Lauraceae). Biochemical Systematics and Ecology, 2016, 67, 53-57.	1.3	7
44	Evaluating the potential of phenolic profiles as discriminant features among extra virgin olive oils from Moroccan controlled designations of origin. Food Research International, 2016, 84, 41-51.	6.2	33
45	Evaluating the potential of LC coupled to three alternative detection systems (ESI-IT, APCI-TOF and) Tj ETQq1 1 0. 150, 355-366.	784314 r§ 5.5	gBT /Overloc 22
46	Comparing two metabolic profiling approaches (liquid chromatography and gas chromatography) Tj ETQq0 0 0 rg classification perspective. Journal of Chromatography A, 2016, 1428, 267-279.	BT /Overlo 3.7	ock 10 Tf 50 72
47	Exploratory analysis of avocado extracts by GC-MS: new insights into the avocado fruit ripening process. Analytical Methods, 2015, 7, 7318-7326.	2.7	4
48	Metabolomic analysis of avocado fruits by GC-APCI-TOF MS: effects of ripening degrees and fruit varieties. Analytical and Bioanalytical Chemistry, 2015, 407, 547-555.	3.7	32
49	Quality and chemical profiles of monovarietal north Moroccan olive oils from "Picholine Marocaine―cultivar: Registration database development and geographical discrimination. Food Chemistry, 2015, 179, 127-136.	8.2	33
50	First comprehensive characterization of volatile profile of north Moroccan olive oils: A geographic discriminant approach. Food Research International, 2015, 76, 410-417.	6.2	29
51	Comprehensive 3-Year Study of the Phenolic Profile of Moroccan Monovarietal Virgin Olive Oils from the MeknÔs Region. Journal of Agricultural and Food Chemistry, 2015, 63, 4376-4385.	5.2	37
52	Potential of LC–MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils. Food Chemistry, 2015, 166, 292-300.	8.2	52
53	Contribution to the establishment of a protected designation of origin for Meknès virgin olive oil: A 4-years study of its typicality. Food Research International, 2014, 66, 332-343.	6.2	21
54	Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors (APCI-TOF MS and FID). Food Research International, 2014, 62, 801-811.	6.2	40

#	Article	IF	CITATIONS
55	Determination of changes in the metabolic profile of avocado fruits (<i>Persea americana</i>) by two CEâ€MS approaches (targeted and nonâ€ŧargeted). Electrophoresis, 2013, 34, 2928-2942.	2.4	34
56	Merging a sensitive capillary electrophoresis–ultraviolet detection method with chemometric exploratory data analysis for the determination of phenolic acids and subsequent characterization of avocado fruit. Food Chemistry, 2013, 141, 3492-3503.	8.2	23
57	Online spectral library for GC-atmospheric pressure chemical ionization–ToF MS. Bioanalysis, 2013, 5, 1515-1525.	1.5	18
58	Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: Avocado fruit as example. Journal of Chromatography A, 2013, 1313, 228-244.	3.7	31
59	Uptake and metabolism of olive oil polyphenols in human breast cancer cells using nano-liquid chromatography coupled to electrospray ionization–time of flight-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 898, 69-77.	2.3	30
60	Profiling LC-DAD-ESI-TOF MS Method for the Determination of Phenolic Metabolites from Avocado (Persea americana). Journal of Agricultural and Food Chemistry, 2011, 59, 2255-2267.	5.2	56
61	Ultra high performance liquid chromatography-time of flight mass spectrometry for analysis of avocado fruit metabolites: Method evaluation and applicability to the analysis of ripening degrees. Journal of Chromatography A, 2011, 1218, 7723-7738.	3.7	56
62	Gas chromatography–atmospheric pressure chemical ionization-time of flight mass spectrometry for profiling of phenolic compounds in extra virgin olive oil. Journal of Chromatography A, 2011, 1218, 959-971.	3.7	66
63	Exploratory analysis of human urine by LC–ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Analytical and Bioanalytical Chemistry, 2010, 398, 463-475.	3.7	91
64	Effect of olive ripeness on chemical properties and phenolic composition of chétoui virgin olive oil. Journal of the Science of Food and Agriculture, 2010, 90, 199-204.	3.5	82
65	Nano and rapid resolution liquid chromatography–electrospray ionization–time of flight mass spectrometry to identify and quantify phenolic compounds in olive oil. Journal of Separation Science, 2010, 33, 2069-2078.	2.5	31
66	Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 416-429.	2.8	132
67	Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 1130-1160.	2.8	105
68	Analytical Determination of Polyphenols in Olive Oil. , 2010, , 509-523.		7
69	High Capacity Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry: Coupling a Porous Sheathless Interface with Transient-Isotachophoresis. Analytical Chemistry, 2010, 82, 9476-9483.	6.5	155
70	Exploratory Characterization of the Unsaponifiable Fraction of Tunisian Virgin Olive Oils by a Global Approach with HPLC-APCI-IT MS/MS Analysis. Journal of Agricultural and Food Chemistry, 2010, 58, 6418-6426.	5.2	22
71	NACEâ€ESIâ€TOF MS to reveal phenolic compounds from olive oil: Introducing enriched olive oil directly inside capillary. Electrophoresis, 2009, 30, 3099-3109.	2.4	24
72	A 2â€Dâ€HPLCâ€CE platform coupled to ESIâ€TOFâ€MS to characterize the phenolic fraction in olive oil. Electrophoresis, 2009, 30, 2688-2701.	2.4	32

#	Article	IF	CITATIONS
73	Use of capillary electrophoresis with UV detection to compare the phenolic profiles of extraâ€virgin olive oils belonging to Spanish and Italian PDOs and their relation to sensorial properties. Journal of the Science of Food and Agriculture, 2009, 89, 2144-2155.	3.5	26
74	From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. TrAC - Trends in Analytical Chemistry, 2009, 28, 393-403.	11.4	83
75	From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. TrAC - Trends in Analytical Chemistry, 2009, 28, 263-278.	11.4	73
76	Gas Chromatography/Atmospheric Pressure Chemical Ionization-Time of Flight Mass Spectrometry: Analytical Validation and Applicability to Metabolic Profiling. Analytical Chemistry, 2009, 81, 10071-10079.	6.5	75
77	Multi-component analysis (sterols, tocopherols and triterpenic dialcohols) of the unsaponifiable fraction of vegetable oils by liquid chromatography–atmospheric pressure chemical ionization–ion trap mass spectrometry. Talanta, 2009, 80, 924-934.	5.5	49
78	A simplified method for HPLCâ€MS analysis of sterols in vegetable oil. European Journal of Lipid Science and Technology, 2008, 110, 1142-1149.	1.5	49
79	Reversed-phase high-performance liquid chromatography coupled to ultraviolet and electrospray time-of-flight mass spectrometry on-line detection for the separation of eight tetracyclines in honey samples. Journal of Chromatography A, 2008, 1195, 107-116.	3.7	58
80	tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). BMC Cancer, 2008, 8, 377.	2.6	108
81	Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. International Journal of Molecular Medicine, 2008, 22, 433-9.	4.0	60
82	Coelectroosmotic capillary electrophoresis of phenolic acids and derivatized amino acids using N,N-dimethylacrylamide-ethylpyrrolidine methacrylate physically coated capillaries. Talanta, 2007, 71, 397-405.	5.5	17
83	Phenolic Molecules in Virgin Olive Oils: a Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules, 2007, 12, 1679-1719.	3.8	652
84	Evaluation of the Influence of Thermal Oxidation on the Phenolic Composition and on the Antioxidant Activity of Extra-Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 2007, 55, 4771-4780.	5.2	98
85	CE- and HPLC-TOF-MS for the characterization of phenolic compounds in olive oil. Electrophoresis, 2007, 28, 806-821.	2.4	88
86	Lignan profile in seeds of modern and old Italian soft wheat (<i>Triticum aestivum</i> L.) cultivars as revealed by CEâ€MS analyses. Electrophoresis, 2007, 28, 4212-4219.	2.4	60
87	Olive oil's bitter principle reverses acquired autoresistance to trastuzumab (Herceptinâ"¢) in HER2-overexpressing breast cancer cells. BMC Cancer, 2007, 7, 80.	2.6	154
88	Rapid Quantification of the Phenolic Fraction of Spanish Virgin Olive Oils by Capillary Electrophoresis with UV Detection. Journal of Agricultural and Food Chemistry, 2006, 54, 7984-7991.	5.2	56
89	Protective Effects of Extra Virgin Olive Oil Phenolics on Oxidative Stability in the Presence or Absence of Copper Ions. Journal of Agricultural and Food Chemistry, 2006, 54, 4880-4887.	5.2	93
90	Comparative study between a commercial and a homemade capillary electrophoresis instrument for the simultaneous determination of aminated compounds by induced fluorescence detection. Analytical and Bioanalytical Chemistry, 2006, 386, 1835-1847.	3.7	10

#	Article	IF	CITATIONS
91	Capillary electrophoresis-electrospray ionization-mass spectrometry method to determine the phenolic fraction of extra-virgin olive oil. Electrophoresis, 2006, 27, 2182-2196.	2.4	44
92	A simple and rapid electrophoretic method to characterize simple phenols, lignans, complex phenols, phenolic acids, and flavonoids in extra-virgin olive oil. Journal of Separation Science, 2006, 29, 2221-2233.	2.5	49
93	Electrophoretic identification and quantitation of compounds in the polyphenolic fraction of extra-virgin olive oil. Electrophoresis, 2005, 26, 3538-3551.	2.4	83
94	Co-electroosmotic capillary electrophoresis determination of phenolic acids in commercial olive oil. Journal of Separation Science, 2005, 28, 925-934.	2.5	56
95	Analytical determination of polyphenols in olive oils. Journal of Separation Science, 2005, 28, 837-858.	2.5	177
96	Evaluation of the Antioxidant Capacity of Individual Phenolic Compounds in Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2005, 53, 8918-8925.	5.2	246
97	Application of Micellar Electrokinetic Capillary Chromatography to the Analysis of Uncharged Pesticides of Environmental Impact. Journal of Agricultural and Food Chemistry, 2004, 52, 5791-5795.	5.2	21
98	Sensitive Determination of Phenolic Acids in Extra-Virgin Olive Oil by Capillary Zone Electrophoresis. Journal of Agricultural and Food Chemistry, 2004, 52, 6687-6693.	5.2	89
99	Geographical Indication Labels in Moroccan Olive Oil Sector: Territorial Dimension and Characterization of Typicality: A Case Study of Meknès Region. , 0, , .		О