
Yun-Hi Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847819/publications.pdf Version: 2024-02-01

VIIN-HI KIM

#	Article	IF	CITATIONS
1	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	12.6	897
2	Record High Hole Mobility in Polymer Semiconductors via Side-Chain Engineering. Journal of the American Chemical Society, 2013, 135, 14896-14899.	13.7	757
3	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	27.5	251
4	Investigation of Structure–Property Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering. Chemistry of Materials, 2015, 27, 1732-1739.	6.7	244
5	Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes. Journal of the American Chemical Society, 2013, 135, 14321-14328.	13.7	243
6	Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 524-528.	21.0	230
7	Side-Chain-Induced Rigid Backbone Organization of Polymer Semiconductors through Semifluoroalkyl Side Chains. Journal of the American Chemical Society, 2016, 138, 3679-3686.	13.7	229
8	Dramatic Inversion of Charge Polarity in Diketopyrrolopyrroleâ€Based Organic Fieldâ€Effect Transistors via a Simple Nitrile Group Substitution. Advanced Materials, 2014, 26, 7300-7307.	21.0	224
9	Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter (DTPDDA) and a Highly Efficient Blue Light Emitting Diode. Chemistry of Materials, 2015, 27, 6675-6681.	6.7	198
10	Highly Efficient Deepâ€Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. Advanced Materials, 2020, 32, e2004083.	21.0	170
11	Highâ€Mobility Airâ€Stable Naphthalene Diimideâ€Based Copolymer Containing Extended π onjugation for nâ€Channel Organic Field Effect Transistors. Advanced Functional Materials, 2013, 23, 5719-5727.	14.9	166
12	Effect of Substitution of Methyl Groups on the Luminescence Performance of Irlll Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes (OLEDs). European Journal of Inorganic Chemistry, 2004, 2004, 3415-3423.	2.0	158
13	Hâ€Aggregation Strategy in the Design of Molecular Semiconductors for Highly Reliable Organic Thin Film Transistors. Advanced Functional Materials, 2011, 21, 1616-1623.	14.9	146
14	Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency. Journal of Materials Chemistry, 2012, 22, 2695-2700.	6.7	143
15	Complementary Absorbing Starâ€5haped Small Molecules for the Preparation of Ternary Cascade Energy Structures in Organic Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 1556-1565.	14.9	138
16	Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit. Chemical Communications, 2013, 49, 4664.	4.1	128
17	Iridium Complexes with Cyclometalated 2â€Cycloalkenylâ€Pyridine Ligands as Highly Efficient Emitters for Organic Lightâ€Emitting Diodes. Advanced Materials, 2008, 20, 2003-2007.	21.0	122
18	Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Science Advances, 2016, 2, e1601428.	10.3	122

#	Article	IF	CITATIONS
19	Efficient, Thermally Stable, and Mechanically Robust Allâ€Polymer Solar Cells Consisting of the Same Benzodithiophene Unitâ€Based Polymer Acceptor and Donor with High Molecular Compatibility. Advanced Energy Materials, 2021, 11, 2003367.	19.5	122
20	Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38%. Chemistry of Materials, 2016, 28, 7505-7510.	6.7	109
21	Synthesis and Characterization of Highly Soluble and Oxygen Permeable New Polyimides Based on Twisted Biphenyl Dianhydride and Spirobifluorene Diamine. Macromolecules, 2005, 38, 7950-7956.	4.8	107
22	Controlling Horizontal Dipole Orientation and Emission Spectrum of Ir Complexes by Chemical Design of Ancillary Ligands for Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1808102.	21.0	105
23	Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDIâ€Based Polymer as the Electron Transport Layer. Advanced Energy Materials, 2018, 8, 1702872.	19.5	104
24	Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nature Communications, 2018, 9, 3207.	12.8	96
25	Tattooâ€Paper Transfer as a Versatile Platform for Allâ€Printed Organic Edible Electronics. Advanced Materials, 2018, 30, e1706091.	21.0	92
26	Synthesis and Studies on 2-Hexylthieno[3,2-b]thiophene End-Capped Oligomers for OTFTs. Chemistry of Materials, 2007, 19, 3561-3567.	6.7	91
27	Highly efficient deep-blue phosphorescence from heptafluoropropyl-substituted iridium complexes. Chemical Communications, 2015, 51, 58-61.	4.1	91
28	Strategies for the Molecular Design of Donor–Acceptor-type Fluorescent Emitters for Efficient Deep Blue Organic Light Emitting Diodes. Chemistry of Materials, 2018, 30, 857-863.	6.7	85
29	A Pseudoâ€Regular Alternating Conjugated Copolymer Using an Asymmetric Monomer: A Highâ€Mobility Organic Transistor in Nonchlorinated Solvents. Advanced Materials, 2015, 27, 3626-3631.	21.0	84
30	Novel Diketopyrroloppyrrole Random Copolymers: High Chargeâ€Carrier Mobility From Environmentally Benign Processing. Advanced Materials, 2014, 26, 6612-6616.	21.0	80
31	Alkyl Chain Length Dependence of the Field-Effect Mobility in Novel Anthracene Derivatives. ACS Applied Materials & Interfaces, 2015, 7, 351-358.	8.0	80
32	Highâ€Mobility Naphthalene Diimide and Selenopheneâ€Vinyleneâ€Selenopheneâ€Based Conjugated Polymer: nâ€Channel Organic Fieldâ€Effect Transistors and Structure–Property Relationship. Advanced Functional Materials, 2016, 26, 4984-4997.	14.9	75
33	Solvent Additive to Achieve Highly Ordered Nanostructural Semicrystalline DPP Copolymers: Toward a High Charge Carrier Mobility. Advanced Materials, 2013, 25, 7003-7009.	21.0	71
34	Synthesis and Characterization of Highly Soluble and Oxygen Permeable New Polyimides Bearing a Noncoplanar Twisted Biphenyl Unit Containingtert-Butylphenyl or Trimethylsilyl Phenyl Groupsâ€. Macromolecules, 2003, 36, 2327-2332.	4.8	68
35	High Performance Amorphous Polymeric Thin-Film Transistors Based on		

#	Article	IF	CITATIONS
37	Conformation-Insensitive Ambipolar Charge Transport in a Diketopyrrolopyrrole-Based Co-polymer Containing Acetylene Linkages. Chemistry of Materials, 2014, 26, 3928-3937.	6.7	63
38	Alternating Copolymers Containing Bithiophene and Dialkoxynaphthalene for the Applications to Field Effect Transistor and Photovoltaic Cell: Performance and Stability. Chemistry of Materials, 2009, 21, 5499-5507.	6.7	62
39	Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors. Journal of Materials Chemistry C, 2015, 3, 11697-11704.	5.5	62
40	Phenazasiline/Spiroacridine Donor Combined with Methyl-Substituted Linkers for Efficient Deep Blue Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2019, 11, 7199-7207.	8.0	61
41	Recently Advanced Polymer Materials Containing Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]phosphole Oxide Efficient Charge Transfer in Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 3991-3997.	for 14.9	56
42	A Tuned Alternating D–A Copolymer Holeâ€Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. Advanced Materials, 2020, 32, e2004985.	21.0	56
43	A new electron transporting material for effective hole-blocking and improved charge balance in highly efficient phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2013, 1, 2217.	5.5	55
44	Conformationally Twisted Semiconducting Polythiophene Derivatives with Alkylthiophene Side Chain: High Solubility and Air Stability. Macromolecules, 2010, 43, 2118-2123.	4.8	54
45	Determination of the change of flavonoid components as the defence materials of Citrus unshiu Marc. fruit peel against Penicillium digitatum by liquid chromatography coupled with tandem mass spectrometry. Food Chemistry, 2011, 128, 49-54.	8.2	53
46	Facile Route To Control the Ambipolar Transport in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 2287-2294.	6.7	53
47	Breaking the Efficiency Limit of Deepâ€Blue Fluorescent OLEDs Based on Anthracene Derivatives. Advanced Materials, 2022, 34, e2100161.	21.0	53
48	Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 1191-1196.	7.3	52
49	Triplet Harvesting by a Fluorescent Emitter Using a Phosphorescent Sensitizer for Blue Organic-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 26-30.	8.0	50
50	Synthesis and characterization of poly(fluorene)-based copolymer containing triphenylamine group. Journal of Polymer Science Part A, 2006, 44, 172-182.	2.3	48
51	Highly efficient non-doped deep blue fluorescent emitters with horizontal emitting dipoles using interconnecting units between chromophores. Chemical Communications, 2016, 52, 10956-10959.	4.1	48
52	Highly efficient orange organic light-emitting diodes using a novel iridium complex with imide group-containing ligands. Journal of Materials Chemistry, 2009, 19, 8824.	6.7	47
53	Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility. Chemical Communications, 2015, 51, 8120-8122.	4.1	46
54	Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure. Chemical Communications, 2015, 51, 1524-1527.	4.1	46

#	Article	IF	CITATIONS
55	Azasiline-based thermally activated delayed fluorescence emitters for blue organic light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1027-1032.	5.5	46
56	Synergistic Engineering of Side Chains and Backbone Regioregularity of Polymer Acceptors for Highâ€Performance Allâ€Polymer Solar Cells with 15.1% Efficiency. Advanced Energy Materials, 2022, 12, 2103239.	19.5	46
57	A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy and Environmental Science, 2016, 9, 2595-2602.	30.8	45
58	Highly Efficient Deep Blue Phosphorescent OLEDs Based on Tetradentate Pt(II) Complexes Containing Adamantyl Spacer Groups. Advanced Functional Materials, 2021, 31, 2100967.	14.9	45
59	Comparative Studies on the Relations between Composition Ratio and Charge Transport of Diketopyrrolopyrrole-Based Random Copolymers. Macromolecules, 2014, 47, 7030-7035.	4.8	41
60	Importance of Highâ€Electron Mobility in Polymer Acceptors for Efficient Allâ€Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Advanced Functional Materials, 2022, 32, 2108508.	14.9	41
61	Synthesis and characterization of poly(benzodithiophene) derivative for organic thin film transistors. Journal of Polymer Science Part A, 2007, 45, 5277-5284.	2.3	40
62	Development of a new conjugated polymer containing dialkoxynaphthalene for efficient polymer solar cells and organic thin film transistors. Journal of Polymer Science Part A, 2011, 49, 1119-1128.	2.3	40
63	Indolo[3,2- <i>b</i>]indole-Containing Donor–Acceptor Copolymers for High-Efficiency Organic Solar Cells. Chemistry of Materials, 2017, 29, 2135-2140.	6.7	40
64	Design Strategy of Anthracene-Based Fluorophores toward High-Efficiency Deep Blue Organic Light-Emitting Diodes Utilizing Triplet–Triplet Fusion. ACS Applied Materials & Interfaces, 2020, 12, 15422-15429.	8.0	40
65	Boronâ€Based Multiâ€Resonance TADF Emitter with Suppressed Intermolecular Interaction and Isomer Formation for Efficient Pure Blue OLEDs. Small, 2022, 18, e2107574.	10.0	40
66	Effects of Backbone Planarity and Tightly Packed Alkyl Chains in the Donor–Acceptor Polymers for High Photostability. Macromolecules, 2016, 49, 7844-7856.	4.8	39
67	Synthesis and characterization of solution-processable highly branched iridium (III) complex cored dendrimer based on tetraphenylsilane dendron for host-free green phosphorescent organic light emitting diodes. Dyes and Pigments, 2011, 90, 139-145.	3.7	38
68	Synthesis of Poly(benzothiadiazoleâ€ <i>co</i> â€dithienobenzodithiophenes) and Effect of Thiophene Insertion for Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2013, 19, 13242-13248.	3.3	38
69	High performance ink-jet printed diketopyrrolopyrrole-based copolymer thin-film transistors using a solution-processed aluminium oxide dielectric on a flexible substrate. Journal of Materials Chemistry C, 2013, 1, 2408.	5.5	38
70	Donor–Acceptor Alternating Copolymer Compatibilizers for Thermally Stable, Mechanically Robust, and High-Performance Organic Solar Cells. ACS Nano, 2021, 15, 19970-19980.	14.6	38
71	Synthesis and characterization of a novel polymer based on anthracene moiety for organic thin film transistor. Journal of Polymer Science Part A, 2008, 46, 5115-5122.	2.3	36
72	Selenium-Substituted Non-Fullerene Acceptors: A Route to Superior Operational Stability for Organic Bulk Heterojunction Solar Cells. ACS Nano, 2021, 15, 7700-7712.	14.6	36

#	Article	IF	CITATIONS
73	A new multi-functional conjugated polymer for use in high-performance bulk heterojunction solar cells. Chemical Communications, 2015, 51, 11572-11575.	4.1	35
74	Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment. ACS Omega, 2017, 2, 1-10.	3.5	35
75	Understanding the Performance of Organic Photovoltaics under Indoor and Outdoor Conditions: Effects of Chlorination of Donor Polymers. ACS Applied Materials & Interfaces, 2020, 12, 23181-23189.	8.0	35
76	A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. Journal of Materials Chemistry C, 2014, 2, 4937-4946.	5.5	34
77	The effect of branched versus linear alkyl side chains on the bulk heterojunction photovoltaic performance of small molecules containing both benzodithiophene and thienopyrroledione. Physical Chemistry Chemical Physics, 2014, 16, 19874-19883.	2.8	34
78	Lowâ€Voltage, Printed, Allâ€Polymer Integrated Circuits Employing a Lowâ€Leakage and Highâ€Yield Polymer Dielectric. Advanced Electronic Materials, 2018, 4, 1800340.	5.1	34
79	Importance of Terminal Group Pairing of Polymer Donor and Smallâ€Molecule Acceptor in Optimizing Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2021, 31, 2100870.	14.9	34
80	Green solvent-processed, high-performance organic solar cells achieved by outer side-chain selection of selenophene-incorporated Y-series acceptors. Journal of Materials Chemistry A, 2021, 9, 24622-24630.	10.3	34
81	A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor. Nature Communications, 2021, 12, 5842.	12.8	34
82	Synthesis and characterization of new blue light emitting iridium complexes containing a trimethylsilyl group. Journal of Materials Chemistry, 2012, 22, 22721.	6.7	33
83	Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 14004-14010.	8.0	33
84	Dimethylsilyl-linked anthracene–pyrene dimers and their efficient triplet–triplet annihilation in organic light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1090-1094.	5.5	32
85	Universal selection rule for surfactants used in miniemulsion processes for eco-friendly and high performance polymer semiconductors. Energy and Environmental Science, 2017, 10, 2324-2333.	30.8	32
86	Control of Concentration of Nonhydrogen-Bonded Hydroxyl Groups in Polymer Dielectrics for Organic Field-Effect Transistors with Operational Stability. ACS Applied Materials & Interfaces, 2018, 10, 24055-24063.	8.0	32
87	High Chargeâ€Carrier Mobility of 2.5 cm ² V ^{â~'1} s ^{â^'1} from a Waterâ€Borne Colloid of a Polymeric Semiconductor via Smart Surfactant Engineering. Advanced Materials, 2015, 27, 5587-5592.	21.0	31
88	Fine Molecular Tuning of Diketopyrrolopyrrole-Based Polymer Semiconductors for Efficient Charge Transport: Effects of Intramolecular Conjugation Structure. Macromolecules, 2017, 50, 4227-4234.	4.8	31
89	Phenanthro[110,9,8-cdefg]carbazole-Thiophene, Donor–Donor Copolymer for Narrow Band Green-Selective Organic Photodiode. Journal of Physical Chemistry C, 2017, 121, 15931-15936.	3.1	31
90	Dihedral Angle Distribution of Thermally Activated Delayed Fluorescence Molecules in Solids Induces Dual Phosphorescence from Charge-Transfer and Local Triplet States. Chemistry of Materials, 2021, 33, 5618-5630.	6.7	31

#	Article	IF	CITATIONS
91	Naphthalene diimide-based small molecule acceptors for fullerene-free organic solar cells. Solar Energy, 2017, 150, 90-95.	6.1	30
92	Polyphenolic profile and antioxidant effects of various parts of <i>Artemisia annua</i> L Biomedical Chromatography, 2016, 30, 588-595.	1.7	29
93	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. ACS Applied Materials & amp; Interfaces, 2017, 9, 44667-44677.	8.0	29
94	Diffractive X-ray Waveguiding Reveals Orthogonal Crystalline Stratification in Conjugated Polymer Thin Films. Macromolecules, 2018, 51, 2979-2987.	4.8	29
95	Effect of <i>ortho</i> -biphenyl substitution on the excited state dynamics of a multi-carbazole TADF molecule. Journal of Materials Chemistry C, 2020, 8, 12075-12084.	5.5	29
96	Synthesis and characterization of new organosoluble and gas-permeable polyimides from bulky substituted pyromellitic dianhydrides. Journal of Polymer Science Part A, 2002, 40, 4288-4296.	2.3	28
97	Layerâ€byâ€Layer Conjugated Extension of a Semiconducting Polymer for Highâ€Performance Organic Fieldâ€Effect Transistor. Advanced Functional Materials, 2015, 25, 3833-3839.	14.9	28
98	Synthesis of Phenanthro[1,10,9,8- <i>cdefg</i>]carbazole-Based Conjugated Polymers for Green-Selective Organic Photodiodes. ACS Applied Materials & Interfaces, 2016, 8, 31172-31178.	8.0	28
99	Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review. Macromolecular Research, 2022, 30, 71-84.	2.4	28
100	Sterically Hindered and Highly Thermal Stable Spirobifluorenyl-Substituted Poly(p-phenylenevinylene) for Light-Emitting Diodes. Macromolecules, 2003, 36, 3222-3227.	4.8	27
101	Highly Stable Polymer Solar Cells Based on Poly(dithienobenzodithiophene- <i>co</i> -thienothiophene). Macromolecules, 2015, 48, 3890-3899.	4.8	27
102	A novel design of donor–acceptor polymer semiconductors for printed electronics: application to transistors and gas sensors. Journal of Materials Chemistry C, 2020, 8, 8410-8419.	5.5	27
103	Effect of the Selective Halogenation of Small Molecule Acceptors on the Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	27
104	Determination of Polyphenol Components of Korean Prostrate Spurge (<i>Euphorbia supina</i>) by Using Liquid Chromatography—Tandem Mass Spectrometry: Overall Contribution to Antioxidant Activity. Journal of Analytical Methods in Chemistry, 2014, 2014, 1-8.	1.6	25
105	DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 16443-16451.	10.3	25
106	Polarity Engineering of Conjugated Polymers by Variation of Chemical Linkages Connecting Conjugated Backbones. ACS Applied Materials & Interfaces, 2015, 7, 5898-5906.	8.0	25
107	The effects of different night-time temperatures and cultivation durations on the polyphenolic contents of lettuce: Application of principal component analysis. Journal of Advanced Research, 2015, 6, 493-499.	9.5	25
108	Fabrication of High Performance, Narrowband Blue-Selective Polymer Photodiodes with Dialkoxynaphthalene-Based Conjugated Polymer. ACS Photonics, 2018, 5, 636-641.	6.6	25

#	Article	IF	CITATIONS
109	Molecular Engineering of a Donor–Acceptor Polymer To Realize Single Band Absorption toward a Red-Selective Thin-Film Organic Photodiode. ACS Applied Materials & Interfaces, 2019, 11, 28106-28114.	8.0	25
110	A spiro-silafluorene–phenazasiline donor-based efficient blue thermally activated delayed fluorescence emitter and its host-dependent device characteristics. Journal of Materials Chemistry C, 2019, 7, 4191-4198.	5.5	25
111	acceptor under halogen light illumination. Iournal of Power Sources, 2022, 518, 230782.	7.8	25
112	Synthesis and characterization of novel blue light emitting poly[4,4′-biphenylylene(α-phenylvinylene)]. Journal of Materials Chemistry, 2002, 12, 1280-1283.	6.7	24
113	Synthesis and characterization of organic light-emitting copolymers containing naphthalene. Macromolecular Research, 2009, 17, 91-98.	2.4	24
114	Synthesis and characterization of a new ethynylâ€linked alternating anthracene/fluorene copolymer for organic thin film transistor. Journal of Polymer Science Part A, 2009, 47, 1609-1616.	2.3	24
115	N-Octyl-2,7-dithia-5-azacyclopenta[a]pentalene-4,6-dione-Based Low Band Gap Polymers for Efficient Solar Cells. Macromolecules, 2013, 46, 3861-3869.	4.8	24
116	Analysis of charge transport in high-mobility diketopyrrolopyrole polymers by space charge limited current and time of flight methods. RSC Advances, 2014, 4, 35344.	3.6	23
117	Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a diketopyrrolopyrrole-thiophene-bithiazole acceptor–donor–acceptor unit. Journal of Materials Chemistry C, 2017, 5, 3616-3622.	5.5	23
118	Synthesis and characterization of diphenylaminodiphenyl stryl based alternating copolymers. Journal of Polymer Science Part A, 2007, 45, 341-347.	2.3	22
119	A New BDT-Based Conjugated Polymer with Donor-Donor Composition for Bulk Heterojunction Solar Cells. Macromolecular Research, 2016, 24, 457-462.	2.4	22
120	Synthesis and characterization of diphenylamine derivative containing malononitrile for thermally activated delayed fluorescent emitter. Dyes and Pigments, 2017, 140, 14-21.	3.7	22
121	Synthesis of Cyclopentadithiophene–Diketopyrrolopyrrole Donor–Acceptor Copolymers for High-Performance Nonvolatile Floating-Gate Memory Transistors with Long Retention Time. ACS Applied Materials & Interfaces, 2020, 12, 2743-2752.	8.0	22
122	Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 36037-36046.	8.0	21
123	Molecular‣cale Strategies to Achieve High Efficiency and Low Efficiency Rollâ€off in Simplified Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2005292.	14.9	21
124	The Role of Longâ€Alkylâ€Group Spacers in Glycolated Copolymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2202574.	21.0	21
125	Synthesis and characterization of stable blue light-emitting poly(spirobifluorene) derivatives containing alkoxy group. Journal of Polymer Science Part A, 2005, 43, 2316-2324.	2.3	20
126	A new bulky trymethylsilylxylene substituted iridium(III) complex with picolinic acid as ancillary ligand: Synthesis; characterization and applications for efficient yellow-green emitting phosphorescent organic light emitting diodes. Synthetic Metals, 2012, 162, 391-397.	3.9	20

#	Article	IF	CITATIONS
127	Dithienobenzodithiophene-Based Small Molecule Organic Solar Cells with over 7% Efficiency via Additive- and Thermal-Annealing-Free Processing. ACS Applied Materials & Interfaces, 2016, 8, 34353-34359.	8.0	20
128	Low-Temperature, Solution-Processed, 3-D Complementary Organic FETs on Flexible Substrate. IEEE Transactions on Electron Devices, 2017, 64, 1955-1959.	3.0	20
129	Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 13774-13782.	8.0	20
130	Synthesis and Device Performance of a Highly Efficient Fluorene-Based Blue Emission Polymer Containing Bulky 9,9-Dialkylfluorene Substituents. Macromolecules, 2009, 42, 6339-6347.	4.8	19
131	Effects of Alkyl Chain Length on the Optoelectronic Properties and Performance of Pyrrolo-Perylene Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 8859-8867.	8.0	18
132	Organic Photovoltaics Utilizing a Polymer Nanofiber/Fullerene Interdigitated Bilayer Prepared by Sequential Solution Deposition. Journal of Physical Chemistry C, 2016, 120, 12933-12940.	3.1	18
133	Semiconducting/insulating polymer blends with dual phase separation for organic field-effect transistors. RSC Advances, 2017, 7, 7526-7530.	3.6	18
134	Novel naphthalene-diimide-based small molecule with a bithiophene linker for use in organic field-effect transistors. Organic Electronics, 2018, 63, 250-256.	2.6	18
135	Efficient polymer solar cells based on dialkoxynaphthalene and benzo[c][1,2,5]thiadiazole: A new approach for simple donor–acceptor pair. Solar Energy Materials and Solar Cells, 2011, 95, 1678-1685.	6.2	17
136	Alcohol as a Processing Solvent of Polymeric Semiconductors to Fabricate Environmentally Benign and High Performance Polymer Field Effect Transistors. Advanced Functional Materials, 2015, 25, 4844-4850.	14.9	17
137	Synthesis and characterization of perfluorinated phenyl-substituted Ir(<scp>iii</scp>) complex for pure green emission. Journal of Materials Chemistry C, 2017, 5, 3107-3111.	5.5	17
138	Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 39493-39501.	8.0	17
139	Synthesis and characterization of new TPD-based copolymers and applications in bulk heterojunction solar cells. Macromolecular Research, 2018, 26, 29-34.	2.4	17
140	Synthetic Approach for Enhancing Semiconductor Properties of Water-Borne DPP-Copolymer. Chemistry of Materials, 2018, 30, 4808-4815.	6.7	17
141	Enhanced Triplet–Triplet Annihilation of Blue Fluorescent Organic Light-Emitting Diodes by Generating Excitons in Trapped Charge-Free Regions. ACS Applied Materials & Interfaces, 2019, 11, 48121-48127.	8.0	17
142	Synthesis and characterization of new blue light emitting alternating terphenylenevinylene carbazylenevinylene copolymer. Macromolecular Research, 2005, 13, 403-408.	2.4	16
143	Design and synthesis of new fluorene-based blue light emitting polymer containing electron donating alkoxy groups and electron withdrawing oxadiazole. Macromolecular Research, 2007, 15, 216-220.	2.4	16
144	All-organic solution-processed two-terminal transistors fabricated using the photoinduced p-channels. Applied Physics Letters, 2009, 94, 043303.	3.3	16

#	Article	IF	CITATIONS
145	Antioxidant activities and liquid chromatography with electrospray ionization tandem mass spectrometry characterization and quantification of the polyphenolic contents of <i>Rumex nervosus</i> Vahl leaves and stems. Journal of Separation Science, 2016, 39, 1433-1441.	2.5	16
146	Universal Route to Impart Orthogonality to Polymer Semiconductors for Subâ€Micrometer Tandem Electronics. Advanced Materials, 2019, 31, e1901400.	21.0	16
147	Novel blue-light-emitting polymers based on a diphenylanthracene moiety. Journal of Applied Polymer Science, 2006, 100, 2151-2157.	2.6	15
148	Synthesis and characterization of 9,10â€diphenylanthraceneâ€based blue light emitting materials. Journal of Polymer Science Part A, 2009, 47, 5908-5916.	2.3	15
149	End-group tuning of DTBDT-based small molecules for organic photovoltaics. Dyes and Pigments, 2018, 157, 93-100.	3.7	15
150	Enhanced doping efficiency and thermoelectric performance of diketopyrrolopyrrole-based conjugated polymers with extended thiophene donors. Journal of Materials Chemistry C, 2021, 9, 340-347.	5.5	15
151	Synthesis and characterization of new blue-light-emitting polymers based on PPP and PPV having fluorene pendant at vinyl bridge. Journal of Polymer Science Part A, 2006, 44, 4923-4931.	2.3	14
152	Effective Electrophosphorescence Emitting Devices by Using New Type Ir(III) Complex with Bluky Substistuent Spacers. Molecular Crystals and Liquid Crystals, 2006, 444, 95-101.	0.9	14
153	Synthesis and characterization of dialkoxynaphthalene-based new π-conjugated copolymer for photovoltaic solar cell. Macromolecular Research, 2011, 19, 197-202.	2.4	14
154	High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative. Applied Physics Letters, 2012, 101, .	3.3	14
155	A side chain-modified quaterthiophene derivative for enhancing the performance of organic solar cell devices. Journal of Materials Chemistry, 2012, 22, 15141.	6.7	14
156	Novel triethylsilylethynyl anthracene-based organic semiconductors for high performance field effect transistors. Journal of Materials Chemistry, 2012, 22, 24924.	6.7	14
157	A push–pull organic semiconductor with efficient intramolecular charge transfer for solution-processed small molecule solar cells. RSC Advances, 2015, 5, 3435-3442.	3.6	14
158	A dithienophosphole-thienylenevinylene-based donor-acceptor copolymer for organic field-effect transistors. Macromolecular Research, 2016, 24, 629-633.	2.4	14
159	Two dibenzo[Def, Mno]chryseneâ€based polymeric semiconductors: Surprisingly opposite device performances in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2016, 54, 2559-2570.	2.3	14
160	Effect of Backbone Sequence of a Naphthalene Diimide-Based Copolymer on Performance in n-Type Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 35185-35192.	8.0	14
161	Highly efficient solution-processed blue organic light-emitting diodes based on thermally activated delayed fluorescence emitters with spiroacridine donor. Journal of Industrial and Engineering Chemistry, 2019, 78, 265-270.	5.8	14
162	Synthesis and characterization of naphtho[2,1-b:3,4-b′]dithiophene-based polymers with extended Ï€-conjugation systems for use in bulk heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4742-4751.	2.3	13

#	Article	IF	CITATIONS
163	Synthesis of phenanthro[1,10,9,8- <i>cdefg</i>]carbazole-based conjugated polymers for organic solar cell applications. Journal of Polymer Science Part A, 2014, 52, 796-803.	2.3	13
164	A potential naphtho[2,1-b:3,4-bâ€2]dithiophene-based polymer with large open circuit voltage for efficient use in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 1904-1912.	5.5	13
165	Molecular orientation of a new anthracene derivative for highly-efficient blue fluorescence OLEDs. Organic Electronics, 2015, 24, 234-240.	2.6	13
166	LCâ€MS/MS profiling of polyphenolâ€enriched leaf, stem and root extracts of Korean <scp><i>Humulus japonicus</i></scp> Siebold & Zucc and determination of their antioxidant effects. Biomedical Chromatography, 2018, 32, e4171.	1.7	13
167	Effective Molecular Engineering Approach for Employing a Halogen-Free Solvent for the Fabrication of Solution-Processed Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 39107-39115.	8.0	13
168	Effects of varying the lengths of the donor units in π-extended thienothiophene isoindigo-based polymer semiconductors. Journal of Materials Chemistry C, 2018, 6, 9972-9980.	5.5	13
169	Thienothiophenylâ€Isoquinoline Iridium Complexâ€Based Deep Red to Nearâ€Infrared Organic Lightâ€Emitting Diodes with Low Driving Voltage and High Radiant Emittance for Practical Biomedical Applications. Advanced Photonics Research, 2021, 2, 2100121.	3.6	13
170	Novel alkoxyanthracene donor and benzothiadiazole acceptor for organic thin film transistor and bulk heterojunction organic photovoltaic cells. Journal of Polymer Science Part A, 2014, 52, 1306-1314.	2.3	12
171	Effects of Bulk Heterojunction Morphology Control via Thermal Annealing on the Fill Factor of Anthracene-based Polymer Solar Cells. Macromolecular Research, 2020, 28, 820-825.	2.4	12
172	Direct Observation of Confinement Effects of Semiconducting Polymers in Polymer Blend Electronic Systems. Advanced Science, 2021, 8, 2100332.	11.2	12
173	Revisiting carbazole-based polymer donors for efficient and thermally stable polymer solar cells: structural utility of coplanar π-bridged spacers. Journal of Materials Chemistry A, 2022, 10, 9408-9418.	10.3	12
174	Synthesis and characterization of poly(fluorenylenevinylene-terphenylenevinylene) containing phenyl pendant group. Macromolecular Research, 2006, 14, 81-86.	2.4	11
175	Synthesis and characterization of poly(1,4â€bis((<i>E</i>)â€2â€(3â€dodecylthiophenâ€2â€yl)vinyl)benzene) derivatives. Journal of Polymer Science Part A, 2010, 48, 3942-3949.	2.3	11
176	Wafer-scale and environmentally-friendly deposition methodology for extremely uniform, high-performance transistor arrays with an ultra-low amount of polymer semiconductors. Journal of Materials Chemistry C, 2015, 3, 2817-2822.	5.5	11
177	A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre- or post-treatments. Dyes and Pigments, 2017, 142, 516-523.	3.7	11
178	Control of the horizontal dipole ratio and emission color of deep blue tetradentate Pt(II) complexes using aliphatic spacer groups. Chemical Engineering Journal, 2022, 450, 137836.	12.7	11
179	Synthesis and characterization of highly hindered and thermally stable poly(1,4-spirobifluorenylenevinylene) derivative. Journal of Polymer Science Part A, 2007, 45, 900-907.	2.3	10
180	Synthesis and Characterization of Naphthalene End-Capped Divinylbenzene for OTFT. Journal of Electronic Materials, 2009, 38, 2000-2005.	2.2	10

#	Article	IF	CITATIONS
181	Synthesis and characterization of homoleptic triply cyclometalated iridium(III) complex containing 6-(pyridin-2-yl)isoquinoline moiety for solution-processable orange-phosphorescent organic light-emitting diodes. Dyes and Pigments, 2021, 185, 108880.	3.7	10
182	Enhanced Nâ€Type Doping of a Naphthalene Diimide Based Copolymer by Modification of the Donor Unit. Advanced Electronic Materials, 2021, 7, 2100407.	5.1	10
183	The possibility of 1,3,4-oxadiazole containing polymer as a new polymer electrode in redox supercapacitor. Macromolecular Research, 2002, 10, 40-43.	2.4	9
184	Synthesis and characteristics of new poly(p-phenylenevinylene) with bulkyt-octylphenoxy group. Macromolecular Research, 2003, 11, 194-197.	2.4	9
185	Synthesis and characterization of a new π-conjugated polymer with cyanoacrylate side chain for organic thin film transistors. Macromolecular Research, 2013, 21, 450-455.	2.4	9
186	New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 2016, 125, 316-322.	3.7	9
187	Preferential Orientation of Tetrahedral Silicon-Based Hosts in Phosphorescent Organic Light-Emitting Diodes. ACS Omega, 2018, 3, 9989-9996.	3.5	9
188	Non-halogenated solution-processed ambipolar plastic transistors based on conjugated polymers prepared by asymmetric donor engineering. Journal of Materials Chemistry C, 2019, 7, 14977-14985.	5.5	9
189	Morphology Driven by Molecular Structure of Thiazoleâ€Based Polymers for Use in Fieldâ€Effect Transistors and Solar Cells. Chemistry - A European Journal, 2019, 25, 649-656.	3.3	9
190	Selective Soxhlets extraction to enhance solubility of newly-synthesized poly(indoloindole-selenophene vinylene selenophene) donor for photovoltaic applications. Nano Convergence, 2020, 7, 9.	12.1	9
191	2D Outer Side Chainâ€Incorporated Y Acceptors for Highly Efficient Organic Solar Cells with Nonhalogenated Solvent and Annealingâ€Free Process. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	9
192	Synthesis and device performance of new efficient blue copolymers containing biphenylenevinylene and triphenyldiamine. Macromolecular Research, 2011, 19, 629-634.	2.4	8
193	Dithieno[2,3â€d:2',3'â€d']benzo[1,2â€b:4,5â€b']dithiophene (DTBDAT)â€based copolymers for highâ€performai organic solar cells. Journal of Polymer Science Part A, 2016, 54, 3182-3192.	າce 2.3	8
194	Twisted Linker Effect on Naphthalene Diimideâ€Based Dimer Electron Acceptors for Nonâ€fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1800108.	3.9	8
195	Two TPD-Based Conjugated Polymers: Synthesis and Photovoltaic Applications as Donor Materials. Macromolecular Research, 2018, 26, 1193-1199.	2.4	8
196	Efficient solution processed hybrid white organic light-emitting diodes based on a blue thermally activated delayed fluorescence emitter. Thin Solid Films, 2020, 695, 137753.	1.8	8
197	A Molecular‣witchâ€Embedded Organic Photodiode for Capturing Images against Strong Backlight. Advanced Materials, 2022, 34, e2200526.	21.0	8
198	Synthesis and characterization of a new PPV derivative containing a sterically hindered 2,5-dimethylphenyl group. Macromolecular Research, 2003, 11, 471-475.	2.4	7

#	Article	IF	CITATIONS
199	New family of highly emissive, soluble poly(1,4-fluorenylenevinylene) derivatives: Synthesis and characterization. Journal of Polymer Science Part A, 2005, 43, 6515-6523.	2.3	7
200	A Novel Phenothiazine Derivative for Application in High Performance Red Emitting Electroluminescent Device. Molecular Crystals and Liquid Crystals, 2006, 444, 257-263.	0.9	7
201	Bistaggered Contact Geometry for Symmetric Dual-Gate Organic TFTs. IEEE Transactions on Electron Devices, 2019, 66, 3118-3123.	3.0	7
202	Enhancing Doping Efficiency of Diketopyrrolopyrrole-Copolymers by Introducing Sparse Intramolecular Alkyl Chain Spacing. Macromolecules, 2021, 54, 7870-7879.	4.8	7
203	Doping and Thermoelectric Behaviors of Donor-Acceptor Polymers with Extended Planar Backbone. Macromolecular Research, 2021, 29, 887-894.	2.4	7
204	Intramolecular energy transferable (2,2-diphenylvinyl)phenyl substituted poly(p-phenylenevinylene) derivative with efficient photoluminescence and electroluminescence. Journal of Polymer Science Part A, 2004, 42, 5636-5646.	2.3	6
205	The alignment of liquid crystals on the film surfaces of soluble aromatic polyimides bearingt-butylphenyl and trimethylsilylphenyl side groups. Macromolecular Research, 2009, 17, 976-986.	2.4	6
206	Synthesis and characterization of highly conjugated cyclopenta[def]phenanthrene-based polymers. Macromolecular Research, 2010, 18, 185-191.	2.4	6
207	Bis(1-phenyl-1H-benzo[d]imidazole)phenylphosphine oxide interlayer for effective hole blocking in efficient phosphorescent organic light emitting diodes based on widely used charge transporting layers. Synthetic Metals, 2014, 190, 39-43.	3.9	6
208	Deepâ€Blue Phosphorescent Emitters with Phosphoryl Groups for Organic Lightâ€Emitting Diodes by Solution Processes. Israel Journal of Chemistry, 2014, 54, 993-998.	2.3	6
209	Donor-acceptor-structured naphtodithiophene-based copolymers for organic thin-film transistors. Journal of Polymer Science Part A, 2016, 54, 525-531.	2.3	6
210	Synergetic Evolution of Diketopyrrolopyrrole-Based Polymeric Semiconductor for High Reproducibility and Performance: Random Copolymerization of Similarly Shaped Building Blocks. Macromolecular Rapid Communications, 2016, 37, 2057-2063.	3.9	6
211	Control of consistent ordering in π-conjugated polymer films for organic field-effect transistor applications. RSC Advances, 2016, 6, 70733-70739.	3.6	6
212	Effect of vacuum treatment in diketopyrrolopyrrole (DPP) based copolymer with ratio controlled toluene- and benzene- functional groups for efficient organic photovoltaic cells: Morphological and electrical contribution. Organic Electronics, 2017, 46, 183-191.	2.6	6
213	Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side chain engineering: Compact model parameter extraction strategy for high-voltage logic applications. Organic Electronics, 2018, 54, 1-8.	2.6	6
214	Synthesis and characterization of highly soluble phenanthro[1,10,9,8-c,d,e,f,g]carbazole-based copolymer: Effects of thermal treatment on crystalline order and charge carrier mobility. Dyes and Pigments, 2018, 149, 560-565.	3.7	6
215	Indoloindole-based small molecule bulk heterojunction small molecule solar cells. Dyes and Pigments, 2019, 161, 419-426.	3.7	6
216	Importance of Blade-Coating Temperature for Diketopyrrolopyrrole-based Thin-Film Transistors. Crystals, 2019, 9, 346.	2.2	6

#	Article	IF	CITATIONS
217	Electrohydrodynamic-Jet (EHD)-Printed Diketopyrrolopyroole-Based Copolymer for OFETs and Circuit Applications. Polymers, 2019, 11, 1759.	4.5	6
218	High-performance ambipolar benzodifurandione-based donor-acceptor copolymer with balanced hole and electron mobility. Dyes and Pigments, 2019, 162, 481-486.	3.7	6
219	The effect of molecular aggregation of thermally activated delayed fluorescence sensitizers for hyperfluorescence in organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 4705-4716.	5.5	6
220	NOVEL BLUE ORGANIC LIGHT-EMITTING MATERIAL. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 649-653.	1.8	5
221	Synthesis and characterization of novel poly(arylenevinylene) derivative. Journal of Applied Polymer Science, 2008, 110, 2009-2015.	2.6	5
222	The electrical and photoconductivity characteristics of donor-acceptor alternating copolymer using solution process. Applied Physics Letters, 2012, 101, .	3.3	5
223	Synthesis of donor-acceptor alternating copolymer by uncatalyzed condensation polymerization. Macromolecular Research, 2013, 21, 463-465.	2.4	5
224	New donor-acceptor copolymer containing dialkoxy naphthalene and carbonylated thieno[3,4-b]thiophene for OTFT and OPV. Macromolecular Research, 2014, 22, 569-573.	2.4	5
225	Structure–Property Relationships: Asymmetric Alkylphenylâ€6ubstituted Anthracene Molecules for Use in Smallâ€Molecule Solar Cells. ChemSusChem, 2015, 8, 1548-1556.	6.8	5
226	Thermally Stable Dibenzo[def,mno]chryseneâ€Based Polymer Solar Cells: Effect of Thermal Annealing on the Morphology and Photovoltaic Performances. Macromolecular Chemistry and Physics, 2016, 217, 2116-2124.	2.2	5
227	Low-band gap copolymers based on diketopyrrolopyrrole and dibenzosilole and their application in organic photovoltaics. Dyes and Pigments, 2017, 146, 73-81.	3.7	5
228	Orange electrophosphorescence based on bis(3,5-dimethylphenyl)pyridine iridium (III) complexes for non-halogenated solution processable phosphorescent organic light-emitting diodes. Dyes and Pigments, 2018, 149, 719-727.	3.7	5
229	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	3.3	5
230	New Fused Pyrrolopyridineâ€Based Copolymers for Organic Solar Cell. Macromolecular Rapid Communications, 2019, 40, 1800784.	3.9	5
231	Ï€â€Extended Thiazole ontaining Polymer Semiconductor for Balanced Charge–Carrier Mobilities. Macromolecular Rapid Communications, 2021, 42, 2000741.	3.9	5
232	P-140: High Efficient Anthracene-Based Blue Light Emitting Material for OLED. Digest of Technical Papers SID International Symposium, 2005, 36, 835.	0.3	4
233	New semiconducting copolymers containing alkyl quarterthiophene and alkoxy naphthalene moieties for organic thin film transistors. Macromolecular Research, 2014, 22, 1012-1017.	2.4	4
234	New blue phosphorescence from trifluorosulfonyl-substituted iridium complexes. Dyes and Pigments, 2019, 163, 684-691.	3.7	4

#	Article	IF	CITATIONS
235	Spirobifluorene-based non-fullerene acceptors for the environmentally benign process. Dyes and Pigments, 2020, 180, 108369.	3.7	4
236	Highly efficient orange phosphorescent organic light-emitting diodes with (4-(3,5-dimethylphenyl)-2-(m-tolyl)pyridine)-based iridium complex. Dyes and Pigments, 2021, 186, 109006.	3.7	4
237	Effect of Source–Drain Electric Field on Charge Transport Mechanism in Polymerâ€Based Thinâ€Film Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000753.	1.8	4
238	Naphthalene-Diimide-Based Small Molecule Containing a Thienothiophene Linker for n-Type Organic Field-Effect Transistors. Macromolecular Research, 2022, 30, 470-476.	2.4	4
239	A novel bright blue electroluminescent polymer: poly[4,4′-biphenylene-α-(9″,9″-dihexyl-3-fluorenyl) vinylene]. Macromolecular Symposia, 2000, 154, 171-176.	0.7	3
240	Novel Blue Organic Light Emitting Materials. Molecular Crystals and Liquid Crystals, 2002, 377, 19-23.	0.9	3
241	New deep blue light emitting copolymer containing fluorene, carbazole, and dialkoxynaphthalene. Journal of Applied Polymer Science, 2011, 121, 43-48.	2.6	3
242	Non-volatile hybrid memory devices with excellent reliability. RSC Advances, 2013, 3, 13156.	3.6	3
243	Flexible High-Performance All-Inkjet-Printed Inverters: Organo-Compatible and Stable Interface Engineering (Adv. Mater. 34/2013). Advanced Materials, 2013, 25, 4772-4772.	21.0	3
244	Synthesis and Characterization of Naphthalene Endâ€capped Triethylsilylethynyl Anthradithiophene for Organic Thinâ€Film Transistors. Bulletin of the Korean Chemical Society, 2015, 36, 2051-2054.	1.9	3
245	Synthesis of thiophene-based polymeric semiconductor with high aromatic density and its application in organic thin-film transistors. Macromolecular Research, 2016, 24, 1077-1083.	2.4	3
246	Effect of High-Speed Blade Coating on Electrical Characteristics in Polymer Based Transistors. Journal of Nanoscience and Nanotechnology, 2020, 20, 5486-5490.	0.9	3
247	High-Efficiency Diphenylpyrimidine Derivatives Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 356.	3.6	3
248	Synthesis of a novel highly conjugated conducting polymer. Journal of Polymer Science Part A, 1998, 36, 949-953.	2.3	2
249	New Blue Light Emitting Polymers Having the Characters of PPP and PPV. Molecular Crystals and Liquid Crystals, 2002, 377, 109-112.	0.9	2
250	SYNTHESIS AND ELECTROOPTICAL PROPERTIES OF NOVEL PPV DERIVATIVES CONTAINING 1,3,4-OXADIAZOLE. Molecular Crystals and Liquid Crystals, 2003, 405, 27-32.	0.9	2
251	TOWARD EFFICIENT ELECTRON-TRANSPORTING AND BLUE-EMITTING MATERIALS FOR ORGANIC LIGHT-EMITTING DIODES: STRUCTURE AND PHOTOLUMINESCENT PROPERTIES OF SILOLE DERIVATIVES. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 487-495.	1.8	2
252	Side chain engineering in DTBDT-based small molecules for efficient organic photovoltaics. Nanoscale, 2019, 11, 13845-13852.	5.6	2

#	Article	IF	CITATIONS
253	Tris(4-(1-phenyl-1 <i>H</i> -benzo[<i>d</i>]imidazole)phenyl)phosphine oxide for enhanced mobility and restricted traps in photovoltaic interlayers. Journal of Materials Chemistry C, 2021, 9, 3642-3651.	5.5	2
254	Molecular engineering of non-fullerene acceptors based on thiophene-fused end groups for fullerene-free organic solar cells. Dyes and Pigments, 2021, , 109987.	3.7	2
255	Rational Understanding of Substituent Effects on Multi Carbazole Thermally Activated Delayed Fluorescent Emitters. Journal of Materials Chemistry C, O, , .	5.5	2
256	Random copolymers with different Cl position for optimizing morphology with acceptor. Dyes and Pigments, 2022, 201, 110136.	3.7	2
257	Synthesis and Light Emitting Properties of Poly (Biphenylenevinylene) Derivative with Bulky Substituent. Molecular Crystals and Liquid Crystals, 2002, 377, 105-108.	0.9	1
258	Synthesis and Characteristics of Novel Poly (Terphenylenevinylene) Derivative Containing Benzoxazolyl Group. Molecular Crystals and Liquid Crystals, 2002, 377, 113-116.	0.9	1
259	Organic Field-Effect Transistors: Dramatic Inversion of Charge Polarity in Diketopyrrolopyrrole-Based Organic Field-Effect Transistors via a Simple Nitrile Group Substitution (Adv. Mater. 43/2014). Advanced Materials, 2014, 26, 7282-7282.	21.0	1
260	Surfactant Engineering: High Charge-Carrier Mobility of 2.5 cm2 Vâ^'1 sâ^'1 from a Water-Borne Colloid of a Polymeric Semiconductor via Smart Surfactant Engineering (Adv. Mater. 37/2015). Advanced Materials, 2015, 27, 5624-5624.	21.0	1
261	Synthesis and characterization of heptaflurosulfonyl-substituted iridium complexes for blue phosphorescent organic light emitting diodes. Molecular Crystals and Liquid Crystals, 2018, 676, 83-94.	0.9	1
262	Synthesis and Characterization of Poly(triethylsilylethynylanthradithiophene-bithiazole) for Organic Thin Film Transistor. Macromolecular Research, 2020, 28, 789-792.	2.4	1
263	New 3, 8â€difluoro indoloindoleâ€based copolymers for organic solar cell. International Journal of Energy Research, 2021, 45, 7806-7813.	4.5	1
264	A Solution-Processed Cathode Interfacial Layer Facilitates Efficient Energy Level Alignment in Organic Photovoltaics. Journal of Physical Chemistry C, 2021, 125, 20067-20075.	3.1	1
265	Influence of an Amide-Functionalized Monomeric Unit on the Morphology and Electronic Properties of Non-Fullerene Polymer Solar Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , 1.	4.9	1
266	New Bithiophene Extended IDIC-Based Non-Fullerene Acceptors and Organic Photovoltaics Thereof. Molecules, 2022, 27, 1113.	3.8	1
267	Solution-processed sky-blue phosphorescent organic light-emitting diodes based on 2-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene-8-yl)-4-(trimethylsilyl)pyridine chelated iridium complex. Journal of Information Display, 2022, 23, 273-279.	4.0	1
268	SYNTHESIS AND PROPERTIES OF POLY(1,6-HEPTADIYNE) HAVING A BULKY AND RIGID t-BUTYLBENZOYL GROUP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 1185-1197.	2.2	0
269	Synthesis and Characterization of New Blue Light Emitting Poly(arylenevinylene) Derivatives Containing Fluorene Pendant. Molecular Crystals and Liquid Crystals, 2006, 444, 169-176.	0.9	0
270	Synthesis and Characterization of Violet Light Emitting Polymer based on Fluorene and Dimethylsilane. Molecular Crystals and Liquid Crystals, 2013, 578, 26-32.	0.9	0

#	Article	IF	CITATIONS
271	Tris-(8-hydroxyquinoline)aluminum thin film as ETL in efficient green phosphorescent OLEDs. , 2013, , .		Ο
272	Synthesis and Characterization of Poly(silole-pyridine). Molecular Crystals and Liquid Crystals, 2014, 599, 125-131.	0.9	0
273	(4,4′-N,N′-dicarbazole)biphenyl (CBP) as efficient host in cost-effective green phosphorescent OLEDs. , 2014, , .		0
274	Organic Semiconductors: Layerâ€byâ€Layer Conjugated Extension of a Semiconducting Polymer for Highâ€Performance Organic Fieldâ€Effect Transistor (Adv. Funct. Mater. 25/2015). Advanced Functional Materials, 2015, 25, 3832-3832.	14.9	0
275	Determination of process-related impurities in N-acetylglucosamine prepared by chemical and enzymatic methods: structural elucidation and quantification. Archives of Pharmacal Research, 2016, 39, 937-945.	6.3	0
276	A New Dithienopyridine-Based Polymer for an Organic Electronics. Journal of Nanoscience and Nanotechnology, 2017, 17, 5792-5795.	0.9	0
277	Two BDT-TPP-Based Polymer Semiconductors: It's Characterization and Application for Photovoltaics. Journal of Nanoscience and Nanotechnology, 2017, 17, 5656-5661.	0.9	0
278	A new ambipolar copolymer for organic electronics. Journal of Information Display, 2018, 19, 1-5.	4.0	0
279	Macromol. Rapid Commun. 14/2018. Macromolecular Rapid Communications, 2018, 39, 1870034.	3.9	0
280	Organic Electronics: Universal Route to Impart Orthogonality to Polymer Semiconductors for Subâ€Micrometer Tandem Electronics (Adv. Mater. 28/2019). Advanced Materials, 2019, 31, 1970204.	21.0	0
281	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12233-12233.	3.3	0
282	Synthesis of Alkoxyaceneâ€Based Random Copolymers and Binary Solvent Additive for High Efficiency Organic Photovoltaics. Macromolecular Chemistry and Physics, 2019, 220, 1900409.	2.2	0
283	Structural influence of a dichalcogenopheno-1,3,4-chalcogenodiazole comonomer on the optoelectronic properties of diketopyrrolopyrrole-based conjugated polymers. Polymer Chemistry, 2021, 12, 1758-1767.	3.9	0
284	Breaking the Efficiency Limit of Deepâ€Blue Fluorescent OLEDs Based on Anthracene Derivatives (Adv.) Tj ETQq0) 0.0 rgBT 21.9	/Oyerlock 10
285	Synthesis and characterization of triethylsilylethynyl anthradithiophene with bithiophene end-groups for OTFT device. Molecular Crystals and Liquid Crystals, 0, , 1-6.	0.9	0
286	Synthesis and characterization of polythiophene containing side chain electron acceptor for OPV. Molecular Crystals and Liquid Crystals, 0, , 1-10.	0.9	0
287	On the Publication of the Special Issue 48th World Polymer Congress (IUPAC-MACRO2020+). Macromolecular Research, 2021, 29, 833-833.	2.4	0