Niklas von der Assen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Techno-economic assessment and carbon footprint of processes for the large-scale production of oxymethylene dimethyl ethers from carbon dioxide and hydrogen. Sustainable Energy and Fuels, 2022, 6, 528-549.	4.9	23
2	Blend for all or pure for few? Well-to-wheel life cycle assessment of blending electricity-based OME _{3–5} with fossil diesel. Sustainable Energy and Fuels, 2022, 6, 1959-1973.	4.9	10
3	HENDling: Simultaneous Heat-Exchanger-Network Design and Scheduling for Batch Processes. , 2022, ,		0
4	Is electrochemical CO ₂ reduction the future technology for power-to-chemicals? An environmental comparison with H ₂ -based pathways. Sustainable Energy and Fuels, 2021, 5, 5748-5761.	4.9	19
5	Designed to Be Green, Economic, and Efficient: A Ketoneâ€Esterâ€Alcoholâ€Alkane Blend for Future Sparkâ€lgnition Engines. ChemSusChem, 2021, 14, 5254-5264.	6.8	8
6	The carbon footprint of the carbon feedstock CO ₂ . Energy and Environmental Science, 2020, 13, 2979-2992.	30.8	110
7	Life Cycle Assessment for the Design of Chemical Processes, Products, and Supply Chains. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 203-233.	6.8	44
8	Second-Order Analytical Uncertainty Analysis in Life Cycle Assessment. Environmental Science & Technology, 2017, 51, 13199-13204.	10.0	11
9	Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid-metal technology. International Journal of Hydrogen Energy, 2016, 41, 23204-23212.	7.1	42
10	Selecting CO2Sources for CO2Utilization in Europe: Which, Where, and How Much at Which Environmental Costs?. Chemie-Ingenieur-Technik, 2016, 88, 1258-1259.	0.8	1
11	Selecting CO ₂ Sources for CO ₂ Utilization by Environmental-Merit-Order Curves. Environmental Science & Technology, 2016, 50, 1093-1101.	10.0	164
12	lt is better to prevent waste than to treat or clean up waste after it is formed – or: what Benjamin Franklin has to do with "Green Chemistry― Green Chemistry, 2016, 18, 1172-1174.	9.0	19
13	Environmental potential of carbon dioxide utilization in the polyurethane supply chain. Faraday Discussions, 2015, 183, 291-307.	3.2	51
14	Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment. Environmental Science & Technology, 2015, 49, 7543-7551.	10.0	24
15	Life-Cycle Assessment Principles for the Integrated Product and Process Design of Polymers from CO2. Computer Aided Chemical Engineering, 2015, , 1235-1240.	0.5	4
16	Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. International Journal of Life Cycle Assessment, 2014, 19, 661-676.	4.7	41
17	Life cycle assessment of CO ₂ capture and utilization: a tutorial review. Chemical Society Reviews, 2014, 43, 7982-7994.	38.1	317
18	Life cycle assessment of polyols for polyurethane production using CO ₂ as feedstock: insights from an industrial case study. Green Chemistry, 2014, 16, 3272-3280	9.0	307

#	Article	IF	CITATIONS
19	Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy and Environmental Science, 2013, 6, 2721.	30.8	325
20	Comparative LCA of multi-product processes with non-common products: a systematic approach applied to chlorine electrolysis technologies. International Journal of Life Cycle Assessment, 2013, 18, 828-839.	4.7	25
21	An Uncertainty Assessment Framework for LCA-based Environmental Process Design. Computer Aided Chemical Engineering, 2013, , 937-942.	0.5	3