Shengyi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18467/publications.pdf

Version: 2024-02-01

331670 434195 1,202 61 21 31 h-index citations g-index papers 61 61 61 1437 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced performance of solution-processed all-inorganic halide perovskite photodetectors by using bulk heterojunction and lateral configuration. Journal of Alloys and Compounds, 2022, 896, 163022.	5. 5	10
2	One-pot synthesis of novel ligand-free tin(<scp>ii</scp>)-based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors. Nanoscale, 2022, 14, 4170-4180.	5.6	4
3	Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors. Surfaces and Interfaces, 2022, 29, 101772.	3.0	21
4	Circulating Vitamin D Levels and the Risk of Atrial Fibrillation: A Two-Sample Mendelian Randomization Study. Frontiers in Nutrition, 2022, 9, 837207.	3.7	3
5	Which method is more efficient on enhancing light absorption for silicon nanowires array based solar cells: Plasmonic metal nanoparticles or narrow-bandgap semiconductor quantum dots?. Materials Science in Semiconductor Processing, 2022, 146, 106661.	4.0	5
6	The Relationship between Blood Lipids and Risk of Atrial Fibrillation: Univariable and Multivariable Mendelian Randomization Analysis. Nutrients, 2022, 14, 181.	4.1	16
7	Hybrid Bulkâ€Heterojunction of Colloidal Quantum Dots and Mixedâ€Halide Perovskite Nanocrystals for Highâ€Performance Selfâ€Powered Broadband Photodetectors. Advanced Functional Materials, 2022, 32, .	14.9	69
8	Hybrid Nanocomposites of Allâ€Inorganic Halide Perovskites with Polymers for Highâ€Performance Fieldâ€Effectâ€Transistorâ€Based Photodetectors: An Experimental and Simulation Study. Advanced Materials Interfaces, 2022, 9, .	3.7	19
9	Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures. Journal of Materials Science and Technology, 2021, 68, 216-226.	10.7	37
10	Colloidal quantum dots based solar cells. , 2021, , 149-180.		0
11	ZnO nanorods array as light absorption antenna for high-gain UV photodetectors. Journal of Alloys and Compounds, 2020, 812, 152158.	5.5	43
12	All-solution-processed UV-IR broadband trilayer photodetectors with CsPbBr ₃ colloidal nanocrystals as carriers-extracting layer. Nanotechnology, 2020, 31, 165502.	2.6	16
13	Porous Single-Wall Carbon Nanotube Templates Decorated with All-inorganic Perovskite Nanocrystals for Ultraflexible Photodetectors. ACS Applied Nano Materials, 2020, 3, 459-467.	5.0	19
14	Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor. Nanotechnology, 2020, 31, 105203.	2.6	30
15	Interlayer of PMMA Doped with Au Nanoparticles for High-Performance Tandem Photodetectors: A Solution to Suppress Dark Current and Maintain High Photocurrent. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26153-26160.	8.0	51
16	Solutionâ€Processed, Selfâ€Powered Broadband CH ₃ NH ₃ Pbl ₃ Photodetectors Driven by Asymmetric Electrodes. Advanced Optical Materials, 2020, 8, 2000215.	7.3	32
17	Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology, 2020, 31, 254001.	2.6	13
18	A facile method to synthesize two-dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. Journal of Alloys and Compounds, 2020, 824, 153970.	5.5	22

#	Article	IF	Citations
19	Surface Engineering of Allâ€Inorganic Perovskite Quantum Dots with Quasi Coreâ^'Shell Technique for Highâ€Performance Photodetectors. Advanced Materials Interfaces, 2020, 7, 2000360.	3.7	34
20	Infrared photovoltaic detector based on p-GeTe/n-Si heterojunction. Nanoscale Research Letters, 2020, 15, 138.	5.7	9
21	High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology, 2019, 30, 465203.	2.6	30
22	Influence of contact resistance on the electrical characteristics of organic static induction transistors. Semiconductor Science and Technology, 2019, 34, 095022.	2.0	1
23	Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chinese Physics B, 2019, 28, 020701.	1.4	17
24	Influence of All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix. Materials, 2019, 12, 985.	2.9	33
25	Solution-phase, template-free synthesis of Pbl ₂ and MAPbl ₃ nano/microtubes for high-sensitivity photodetectors. Nanoscale, 2019, 11, 5188-5196.	5.6	24
26	To enhance the performance of all-inorganic perovskite photodetectors <i>via</i> constructing both bilayer heterostructure and bipolar carrier transporting channels. Journal of Materials Chemistry C, 2019, 7, 14938-14948.	5.5	18
27	A one-step method to synthesize CH ₃ NH ₃ Pbl ₃ :MoS ₂ nanohybrids for high-performance solution-processed photodetectors in the visible region. Nanotechnology, 2019, 30, 085707.	2.6	14
28	Efficiency enhancement for solution-processed PbS quantum dots solar cells by inserting graphene oxide as hole-transporting and interface modifying layer. Organic Electronics, 2018, 58, 270-275.	2.6	12
29	<scp>PEDOT</scp> : <scp>PSS</scp> Modification by blending graphene oxide to improve the efficiency of organic solar cells. Polymer Composites, 2018, 39, 3066-3072.	4.6	11
30	The role of surfactant-treated graphene oxide in polymer solar cells: Mobility study. Organic Electronics, 2018, 53, 303-307.	2.6	6
31	High-sensitivity broadband colloidal quantum dot heterojunction photodetector for night-sky radiation. Journal of Alloys and Compounds, 2018, 764, 446-451.	5.5	19
32	Influence of the Post-Synthesis Annealing on Device Performance of PbS Quantum Dot Photoconductive Detectors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800408.	1.8	4
33	Mn2â^'x Y x (MoO4)3 Phosphor Excited by UV GaN-Based Light-Emitting Diode for White Emission. Journal of Electronic Materials, 2017, 46, 2501-2505.	2.2	0
34	Ultrasensitive all-solution-processed field-effect transistor based perovskite photodetectors with sol-gel SiO2 as the dielectric layer. Journal of Alloys and Compounds, 2017, 717, 150-155.	5.5	19
35	Surfactant-treated graphene oxide in organic solvents and its application in photovoltaic cells. Current Applied Physics, 2017, 17, 343-350.	2.4	13
36	Influence of post-synthesis annealing on PbS quantum dot solar cells. Organic Electronics, 2017, 42, 309-315.	2.6	25

#	Article	lF	Citations
37	An ultrasonic synthesis method for high-luminance perovskite quantum dots. Ceramics International, 2017, 43, 16032-16035.	4.8	16
38	Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr ₃ quantum dots and ternary PbS _x Se _{1â^2x} quantum dots as the active layer. Nanotechnology, 2017, 28, 505501.	2.6	30
39	Efficiency enhancement of organic solar cells by inserting PbS quantum dots film as the infrared absorption layer. Materials Letters, 2017, 187, 136-139.	2.6	13
40	Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology, 2016, 27, 065201.	2.6	23
41	Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. ACS Applied Materials & Interfaces, 2016, 8, 18526-18533.	8.0	59
42	High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(N-vinylcarbazole). RSC Advances, 2016, 6, 44514-44521.	3.6	41
43	Influence of the active layer nanomorphology on device performance for ternary PbS _{<i>x</i>} Se _{1â^'<i>x</i>} quantum dots based solution-processed infrared photodetector. Nanotechnology, 2016, 27, 165202.	2.6	17
44	High performance solution-processed infrared photodiode based on ternary PbS _x Se _{1â°'x} colloidal quantum dots. RSC Advances, 2016, 6, 87730-87737.	3.6	38
45	Design of four mirror inverted telephoto zoom system. Frontiers of Optoelectronics, 2016, 9, 599-608.	3.7	0
46	An alignment method for the reflective zoom system by applying vector wavefront aberration theory. Optik, 2016, 127, 748-751.	2.9	0
47	Current saturation effect for pentacene-based static induction transistor under negative drain-source and gate voltages. Organic Electronics, 2016, 31, 273-277.	2.6	3
48	Pentacene-Based Photodetector in Visible Region With Vertical Field-Effect Transistor Configuration. IEEE Photonics Technology Letters, 2015, 27, 233-236.	2.5	31
49	Performance Enhancement of FET-Based Photodetector by Blending P3HT With PMMA. IEEE Photonics Technology Letters, 2015, 27, 1535-1538.	2.5	17
50	Enhancement of the power conversion efficiency of polymer solar cells by incorporating PbSe quantum dots. Journal of Materials Science, 2015, 50, 840-847.	3.7	9
51	Solution-processed P3HT-based photodetector with field-effect transistor configuration. Applied Physics A: Materials Science and Processing, 2014, 116, 1511-1516.	2.3	20
52	Towards optimization of functionalized single-walled carbon nanotubes adhering with poly(3-hexylthiophene) for highly efficient polymer solar cells. Diamond and Related Materials, 2014, 41, 79-83.	3.9	18
53	Enhancement of the power conversion efficiency of polymer solar cells by functionalized single-walled carbon nanotubes decorated with CdSe/ZnS core–shell colloidal quantum dots. Journal of Materials Science, 2014, 49, 2571-2577.	3.7	9
54	Generalized predictive control with dynamic compensation for quadrotor attitude stabilization. , 2014, , .		2

SHENGYI YANG

#	Article	IF	CITATION
55	Negative differential resistance phenomena in colloidal quantum dots-based organic light-emitting diodes. Applied Physics Letters, 2014, 104, 033301.	3.3	5
56	Field-effect transistor-based solution-processed colloidal quantum dot photodetector with broad bandwidth into near-infrared region. Nanotechnology, 2012, 23, 255203.	2.6	39
57	White light generation combining emissions from exciplex, excimer and electromer in TAPC-based organic light-emitting diodes. Chemical Physics Letters, 2009, 484, 54-58.	2.6	68
58	Influence of heterojunction interface on exciplex emission from organic light-emitting diodes under electric fields. Applied Physics A: Materials Science and Processing, 2008, 90, 475-478.	2.3	5
59	Charge carriers at organic heterojunction interface: Exciplex emission or electroplex emission?. Journal of Applied Physics, 2007, 101, 096101.	2.5	26
60	Impact of electric fields on the emission from organic light-emitting diodes based on polyvinylcarbazole (PVK). Journal of Luminescence, 2007, 122-123, 614-616.	3.1	9
61	Influence of the electric field on carriers recombination zone in bilayer organic electroluminescent device. Science Bulletin, 2000, 45, 1623-1628.	1.7	5