Katharine Moore Tibbetts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1846484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring constrained quantum control landscapes. Journal of Chemical Physics, 2012, 137, 134113.	3.0	65
2	Triangular Gold Nanoplate Growth by Oriented Attachment of Au Seeds Generated by Strong Field Laser Reduction. Nano Letters, 2015, 15, 3377-3382.	9.1	61
3	Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Physical Review A, 2012, 86, .	2.5	54
4	Gold Nanoparticle Synthesis Using Spatially and Temporally Shaped Femtosecond Laser Pulses: Post-Irradiation Auto-Reduction of Aqueous [AuCl ₄] ^{â^²} . Journal of Physical Chemistry C, 2013, 117, 18719-18727.	3.1	52
5	Roles of Free Electrons and H ₂ O ₂ in the Optical Breakdown-Induced Photochemical Reduction of Aqueous [AuCl ₄] ^{â^'} . Journal of Physical Chemistry A, 2017, 121, 6742-6754.	2.5	52
6	Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl ₄] ^{â^'} . Physical Chemistry Chemical Physics, 2018, 20, 28465-28475.	2.8	49
7	Search complexity and resource scaling for the quantum optimal control of unitary transformations. Physical Review A, 2011, 83, .	2.5	48
8	Exploring quantum control landscapes: Topology, features, and optimization scaling. Physical Review A, 2011, 84, .	2.5	46
9	Kinetic Control of [AuCl ₄] ^{â^'} Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. Journal of Physical Chemistry B, 2019, 123, 7204-7213.	2.6	45
10	On the relationship between quantum control landscape structure and optimization complexity. Journal of Chemical Physics, 2008, 128, 154117.	3.0	42
11	One-step femtosecond laser ablation synthesis of sub-3â€⁻nm gold nanoparticles stabilized by silica. Applied Surface Science, 2019, 475, 1048-1057.	6.1	41
12	Elucidating Strong Field Photochemical Reduction Mechanisms of Aqueous [AuCl ₄] ^{â^'} : Kinetics of Multiphoton Photolysis and Radical-Mediated Reduction. Journal of Physical Chemistry A, 2016, 120, 3562-3569.	2.5	36
13	Mechanism of Improved Au Nanoparticle Size Distributions Using Simultaneous Spatial and Temporal Focusing for Femtosecond Laser Irradiation of Aqueous KAuCl ₄ . Journal of Physical Chemistry C, 2014, 118, 23986-23995.	3.1	33
14	Radical Chemistry in a Femtosecond Laser Plasma: Photochemical Reduction of Ag+ in Liquid Ammonia Solution. Molecules, 2018, 23, 532.	3.8	32
15	Searching for quantum optimal control fields in the presence of singular critical points. Physical Review A, 2014, 90, .	2.5	29
16	Characterization of control noise effects in optimal quantum unitary dynamics. Physical Review A, 2014, 90, .	2.5	28
17	Manipulating molecules. Nature Chemistry, 2012, 4, 72-73.	13.6	27
18	Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation. Journal of Physical Chemistry A, 2019, 123, 1140-1152.	2.5	24

#	Article	IF	CITATIONS
19	Measurement of an Electronic Resonance in a Ground-State, Gas-Phase Acetophenone Cation via Strong-Field Mass Spectrometry. Journal of Physical Chemistry Letters, 2013, 4, 1587-1591.	4.6	23
20	Searching for quantum optimal controls under severe constraints. Physical Review A, 2015, 91, .	2.5	23
21	A Theoretical and Mass Spectrometry Study of Dimethyl Methylphosphonate: New Isomers and Cation Decay Channels in an Intense Femtosecond Laser Field. Journal of Physical Chemistry A, 2017, 121, 8414-8424.	2.5	22
22	Mechanism of Gold–Silver Alloy Nanoparticle Formation by Laser Coreduction of Gold and Silver Ions in Solution. Journal of Physical Chemistry B, 2021, 125, 907-917.	2.6	21
23	Optimal control of molecular fragmentation with homologous families of photonic reagents and chemical substrates. Physical Chemistry Chemical Physics, 2013, 15, 18012.	2.8	20
24	Gold Nanotriangle Formation through Strong-Field Laser Processing of Aqueous KAuCl ₄ and Postirradiation Reduction by Hydrogen Peroxide. Langmuir, 2017, 33, 243-252.	3.5	19
25	Measurement of Ionic Resonances in Alkyl Phenyl Ketone Cations via Infrared Strong Field Mass Spectrometry. Journal of Physical Chemistry A, 2013, 117, 12374-12381.	2.5	18
26	Strong Field Adiabatic Ionization Prepares a Launch State for Coherent Control. Journal of Physical Chemistry Letters, 2014, 5, 4305-4309.	4.6	18
27	Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C–NO2 bond homolysis. Journal of Chemical Physics, 2018, 148, 134305.	3.0	17
28	Generation of nanomaterials by reactive laser-synthesis in liquid. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	17
29	Controlling the dissociation dynamics of acetophenone radical cation through excitation of ground and excited state wavepackets. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 164002.	1.5	15
30	Controlling the morphology of copper-silica nanocomposites from laser ablation in liquid. Applied Surface Science, 2020, 510, 145037.	6.1	15
31	Fabrication of Gold–Silicon Nanostructured Surfaces with Reactive Laser Ablation in Liquid. Langmuir, 2020, 36, 10120-10129.	3.5	14
32	Radical cation spectroscopy of substituted alkyl phenyl ketones via tunnel ionization. Chemical Physics, 2014, 442, 81-85.	1.9	13
33	Controlling Dissociation of Alkyl Phenyl Ketone Radical Cations in the Strong-Field Regime through Hydroxyl Substitution Position. Journal of Physical Chemistry A, 2014, 118, 8170-8176.	2.5	12
34	Synthesis of Air-Stable Cu Nanoparticles Using Laser Reduction in Liquid. Nanomaterials, 2021, 11, 814.	4.1	12
35	Exploring control landscapes for laser-driven molecular fragmentation. Journal of Chemical Physics, 2013, 139, 144201.	3.0	11
36	Ultrafast coherent vibrational dynamics in dimethyl methylphosphonate radical cation. Physical Chemistry Chemical Physics, 2018, 20, 4636-4640.	2.8	11

#	Article	IF	CITATIONS
37	Deposition of Cubic Copper Nanoparticles on Silicon Laser-Induced Periodic Surface Structures via Reactive Laser Ablation in Liquid. Langmuir, 2021, 37, 3740-3750.	3.5	11
38	Exploring experimental fitness landscapes for chemical synthesis and property optimization. Physical Chemistry Chemical Physics, 2017, 19, 4266-4287.	2.8	10
39	Laser-assisted synthesis of gold–graphene oxide nanocomposites: effect of pulse duration. Physical Chemistry Chemical Physics, 2020, 22, 18294-18303.	2.8	10
40	Laser synthesis of uncapped palladium nanocatalysts. Applied Surface Science, 2021, 557, 149811.	6.1	10
41	Discovering predictive rules of chemistry from property landscapes. Chemical Physics Letters, 2013, 572, 1-12.	2.6	9
42	Systematic Trends in Photonic Reagent Induced Reactions in a Homologous Chemical Family. Journal of Physical Chemistry A, 2013, 117, 8205-8215.	2.5	9
43	Resolving the source of blue luminescence from alkyl-capped silicon nanoparticles synthesized by laser pulse ablation. Journal of Materials Chemistry C, 2016, 4, 6894-6899.	5.5	9
44	Coherent Vibrational and Dissociation Dynamics of Polyatomic Radical Cations. Chemistry - A European Journal, 2019, 25, 8431-8439.	3.3	9
45	NMR Landscapes for Chemical Shift Prediction. Journal of Physical Chemistry A, 2012, 116, 9142-9157.	2.5	8
46	Constrained control landscape for population transfer in a two-level system. Physical Chemistry Chemical Physics, 2015, 17, 3164-3178.	2.8	8
47	Formation of carbon nanospheres via ultrashort pulse laser irradiation of methane. Materials Chemistry and Physics, 2015, 156, 47-53.	4.0	8
48	Amorphous aluminum-carbide and aluminum–magnesium-carbide nanoparticles from gas phase activation of trimethylaluminum and octamethyldialuminummagnesium using simultaneous spatially and temporally focused ultrashort laser pulses. Nano Structures Nano Objects, 2016, 6, 1-4.	3.5	8
49	Mechanism of Nickel Phyllosilicate Formation by Laser Ablation in Liquid. Journal of Physical Chemistry C, 2020, 124, 13273-13282.	3.1	8
50	Fundamental Principles of Control Landscapes with Applications to Quantum Mechanics, Chemistry and Evolution. Emergence, Complexity and Computation, 2014, , 33-70.	0.3	7
51	From Neutral Aniline to Aniline Trication: A Computational and Experimental Study. Journal of Physical Chemistry A, 2020, 124, 3120-3134.	2.5	6
52	Using computational chemistry to design pump–probe schemes for measuring nitrobenzene radical cation dynamics. Physical Chemistry Chemical Physics, 2021, 23, 13338-13348.	2.8	6
53	Measurement of Ultrafast Vibrational Coherences in Polyatomic Radical Cations with Strong-Field Adiabatic Ionization. Journal of Visualized Experiments, 2018, , .	0.3	5
54	Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry. Molecules, 2019, 24, 509.	3.8	5

#	Article	IF	CITATIONS
55	Quantitative Analysis of Nitrotoluene Isomer Mixtures Using Femtosecond Time-Resolved Mass Spectrometry. Analytical Chemistry, 2021, 93, 11268-11274.	6.5	5
56	Applications of Shaped Femtosecond near-IR Laser Irradiation in the Generation of Metal Nanoparticles. Materials Research Society Symposia Proceedings, 2014, 1654, 1.	0.1	4
57	Au Nanoparticle Synthesis Via Femtosecond Laser-Induced Photochemical Reduction of [AuCl4]â^'. , 2018, , .		4
58	Dissociation of Singly and Multiply Charged Nitromethane Cations: Femtosecond Laser Mass Spectrometry and Theoretical Modeling. Journal of Physical Chemistry A, 2020, 124, 7427-7438.	2.5	4
59	Coherent Control of Molecular Dissociation by Selective Excitation of Nuclear Wave Packets. Frontiers in Chemistry, 2022, 10, 859095.	3.6	4
60	Association analysis of CHMP1.5 genetic variation and bipolar disorder. Psychiatric Genetics, 2005, 15, 211-214.	1.1	3
61	Laboratory transferability of optimally shaped laser pulses for quantum control. Journal of Chemical Physics, 2014, 140, 074302.	3.0	2
62	Nucleation of Gold Nanoparticles in a Solution via Laser Hell: Simulation and Experiments. International Journal of Nanoscience, 2019, 18, 1940059.	0.7	2
63	Superhalogens Among 3 <i>d</i> -Metal Compounds: <i>M</i> F ₄ , <i>M</i> F ₆ , <i>M</i> F ₁₂ , and <i>M</i> F ₁₈ (<i>M</i> = Sc–Zn). Journal of Physical Chemistry A, 2021, 125, 4409-4419.	2.5	2
64	Mechanisms of Formation of Nanoparticles in Aqueous Salt Solutions Under the Action of a High-Power Periodic Laser Radiation. Journal of Engineering Physics and Thermophysics, 2019, 92, 369-375.	0.6	1
65	Frontispiece: Coherent Vibrational and Dissociation Dynamics of Polyatomic Radical Cations. Chemistry - A European Journal, 2019, 25, .	3.3	1
66	Homocoupling and Heterocoupling of Grignard Perfluorobenzene Reagents via Aryne Intermediates: A DFT Study. Journal of Physical Chemistry A, 2019, 123, 9693-9700.	2.5	1
67	Ultrafast Dynamics of Nitro–Nitrite Rearrangement and Dissociation in Nitromethane Cation. Journal of Physical Chemistry A, 2022, ,	2.5	1
68	Conformer-Specific Dissociation Dynamics in Dimethyl Methylphosphonate Radical Cation. Molecules, 2022, 27, 2269.	3.8	1