Andrew D Randall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1845901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Electrographic Signatures Generated by Mechanistically-Diverse Seizurogenic Compounds in the Larval Zebrafish Brain. ENeuro, 2022, 9, ENEURO.0337-21.2022.	1.9	4
2	A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons. Autophagy, 2021, 17, 855-871.	9.1	17
3	Functional brain imaging in larval zebrafish for characterising the effects of seizurogenic compounds acting via a range of pharmacological mechanisms. British Journal of Pharmacology, 2021, 178, 2671-2689.	5.4	16
4	Neurophysiological alterations in the nucleus reuniens of a mouse model of Alzheimer's disease. Neurobiology of Aging, 2020, 88, 1-10.	3.1	5
5	Transcriptional Signatures of Tau and Amyloid Neuropathology. Cell Reports, 2020, 30, 2040-2054.e5.	6.4	45
6	Impaired speed encoding and grid cell periodicity in a mouse model of tauopathy. ELife, 2020, 9, .	6.0	20
7	Imbalance in the response of pre- and post-synaptic components to amyloidopathy. Scientific Reports, 2019, 9, 14837.	3.3	15
8	Sex-associated differences in excitability within the bed nucleus of the stria terminalis are reflective of cell-type. Neurobiology of Stress, 2019, 10, 100143.	4.0	10
9	Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy. Neurochemical Research, 2019, 44, 617-626.	3.3	8
10	Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease. Glia, 2018, 66, 34-46.	4.9	40
11	Detection of Al² plaque-associated astrogliosis in Alzheimer's disease brain by spectroscopic imaging and immunohistochemistry. Analyst, The, 2018, 143, 850-857.	3.5	26
12	Initiation and slow propagation of epileptiform activity from ventral to dorsal medial entorhinal cortex is constrained by an inhibitory gradient. Journal of Physiology, 2018, 596, 2251-2266.	2.9	14
13	Differential agingâ€related changes in neurophysiology and gene expression in IB4â€positive and IB4â€negative nociceptive neurons. Aging Cell, 2018, 17, e12795.	6.7	6
14	Kv7 channels are upregulated during striatal neuron development and promote maturation of human iPSC-derived neurons. Pflugers Archiv European Journal of Physiology, 2018, 470, 1359-1376.	2.8	13
15	<i>In vitro</i> characterization of cellâ€level neurophysiological diversity in the rostral nucleus reuniens of adult mice. Journal of Physiology, 2017, 595, 3549-3572.	2.9	15
16	Altered Synapse Stability in the Early Stages of Tauopathy. Cell Reports, 2017, 18, 3063-3068.	6.4	62
17	4-dimensional functional profiling in the convulsant-treated larval zebrafish brain. Scientific Reports, 2017, 7, 6581.	3.3	39
18	Hippocampal neurophysiology is modified by a disease-associated C-terminal fragment of tau protein. Neurobiology of Aging, 2017, 60, 44-56.	3.1	26

#	ARTICLE	IF	CITATIONS
19	Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife, 2017, 6, .	6.0	178
20	Aging-Associated Changes to Intrinsic Neuronal Excitability in the Bed Nucleus of the Stria Terminalis Is Cell Type-Dependent. Frontiers in Aging Neuroscience, 2017, 9, 424.	3.4	6
21	Are stem cellâ€derived neural cells physiologically credible?. Journal of Physiology, 2016, 594, 6569-6572.	2.9	6
22	Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release. PLoS ONE, 2016, 11, e0152405.	2.5	152
23	Improving and accelerating the differentiation and functional maturation of human stem cellâ€derived neurons: role of extracellular calcium and GABA. Journal of Physiology, 2016, 594, 6583-6594.	2.9	50
24	Contribution of postsynaptic Tâ€ŧype calcium channels to parallel fibreâ€Purkinje cell synaptic responses. Journal of Physiology, 2016, 594, 915-936.	2.9	15
25	Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine, 2016, 8, 335ra56.	12.4	154
26	Forced cell cycle exit and modulation of GABA _A , CREB, and GSK3β signaling promote functional maturation of induced pluripotent stem cell-derived neurons. American Journal of Physiology - Cell Physiology, 2016, 310, C520-C541.	4.6	66
27	Disrupted hippocampal sharpâ€wave rippleâ€associated spike dynamics in a transgenic mouse model of dementia. Journal of Physiology, 2016, 594, 4615-4630.	2.9	70
28	Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy. Journal of Neuroscience, 2016, 36, 312-324.	3.6	49
29	Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy. Journal of Neuroscience, 2016, 36, 350-363.	3.6	82
30	Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus, 2015, 25, 786-797.	1.9	49
31	Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice. Frontiers in Cellular Neuroscience, 2015, 9, 372.	3.7	46
32	Functionalized α-Helical Peptide Hydrogels for Neural Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 431-439.	5.2	59
33	Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1. Translational Psychiatry, 2015, 5, e569-e569.	4.8	34
34	Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome. Nature Neuroscience, 2015, 18, 1291-1298.	14.8	32
35	Long-term culture of pluripotent stem-cell-derived human neurons on diamond – A substrate for neurodegeneration research and therapy. Biomaterials, 2015, 61, 139-149.	11.4	47

Physiology 2015: What I am most looking forward to., 2015, , 17-18.

#	Article	IF	CITATIONS
37	Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse. Neuropharmacology, 2014, 79, 515-524.	4.1	44
38	Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. Experimental Neurology, 2014, 261, 386-395.	4.1	29
39	Neurophysiological modification of <scp>CA</scp> 1 pyramidal neurons in a transgenic mouse expressing a truncated form of disruptedâ€inâ€schizophrenia 1. European Journal of Neuroscience, 2014, 39, 1074-1090.	2.6	27
40	Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system. European Journal of Neuroscience, 2014, 39, 1068-1073.	2.6	11
41	Low Concentrations of the Solvent Dimethyl Sulphoxide Alter Intrinsic Excitability Properties of Cortical and Hippocampal Pyramidal Cells. PLoS ONE, 2014, 9, e92557.	2.5	36
42	Whole-Cell Patch-Clamp Recording of Voltage-Sensitive Ca2+ Channel Currents in Single Cells: Heterologous Expression Systems and Neurones. Methods in Molecular Biology, 2013, 937, 123-148.	0.9	1
43	Sodium Channel Cleavage Is Associated with Aberrant Neuronal Activity and Cognitive Deficits in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 7020-7026.	3.6	80
44	A New Player in the "Synaptopathy―of Alzheimer's Disease – Arc/Arg 3.1. Frontiers in Neurology, 2013 4, 9.	'2.4	50
45	Age-related changes to Na+ channel gating contribute to modified intrinsic neuronal excitability. Neurobiology of Aging, 2012, 33, 2715-2720.	3.1	33
46	Inhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus. PLoS ONE, 2012, 7, e30402.	2.5	32
47	Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2011, 32, 2109.e1-2109.e14.	3.1	88
48	Voltage- and Temperature-Dependent Allosteric Modulation of α7 Nicotinic Receptors by PNU120596. Frontiers in Pharmacology, 2011, 2, 81.	3.5	37
49	Synaptic activation of mGluR1 generates persistent depression of a fast after-depolarizing potential in CA3 pyramidal neurons. European Journal of Neuroscience, 2011, 33, 879-889.	2.6	7
50	A unified model of CA1/3 pyramidal cells: An investigation into excitability. Progress in Biophysics and Molecular Biology, 2011, 105, 34-48.	2.9	34
51	The Metabotropic Glutamate Receptor 7 Allosteric Modulator AMN082: A Monoaminergic Agent in Disguise?. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 345-352.	2.5	96
52	Voltage- and temperature-dependent gating of heterologously expressed channelrhodopsin-2. Journal of Neuroscience Methods, 2010, 193, 7-13.	2.5	20
53	Altered synaptic plasticity in the mossy fibre pathway of transgenic mice expressing mutant amyloid precursor protein. Molecular Brain, 2010, 3, 32.	2.6	28
54	The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. Neuropharmacology, 2010, 59, 243-267.	4.1	56

#	Article	IF	CITATIONS
55	Introduction to the special issue on Alzheimer's disease. Neuropharmacology, 2010, 59, 219-220.	4.1	0
56	Receptor-Mediated Suppression of Potassium Currents Requires Colocalization within Lipid Rafts. Molecular Pharmacology, 2009, 76, 1279-1289.	2.3	34
57	Old and New Pharmacology: Positive Allosteric Modulation of the i±7 Nicotinic Acetylcholine Receptor by the 5-Hydroxytryptamine _{2B/C} Receptor Antagonist SB-206553 (3,5-Dihydro-5-methyl- <i>N</i> -3-pyridinylbenzo[1,2- <i>b</i> :4,5- <i>b</i>)di) Tj ETQq1 1 0.784314 rgBT /Ove	erløæk 10 1	f 50 657 Td
58	766-776. Activityâ€dependent depression of the spike afterâ€depolarization generates longâ€lasting intrinsic plasticity in hippocampal CA3 pyramidal neurons. Journal of Physiology, 2009, 587, 1265-1281.	2.9	62
59	Metabotropic glutamate receptor 1 activity generates persistent, <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptorâ€dependent depression of hippocampal pyramidal cell excitability. European Journal of Neuroscience, 2009, 29, 2347-2362.	2.6	8
60	Characterization of a CNS penetrant, selective M ₁ muscarinic receptor agonist, 77‣Hâ€⊋8â€1. British Journal of Pharmacology, 2008, 154, 1104-1115.	5.4	118
61	The induction of long-term plasticity of non-synaptic, synchronized activity by the activation of group I mGluRs. Neuropharmacology, 2008, 55, 459-463.	4.1	7
62	Characterization of SB-705498, a Potent and Selective Vanilloid Receptor-1 (VR1/TRPV1) Antagonist That Inhibits the Capsaicin-, Acid-, and Heat-Mediated Activation of the Receptor. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 1183-1192.	2.5	98
63	Synaptic activation of GABAB receptors regulates neuronal network activity and entrainment. European Journal of Neuroscience, 2007, 25, 2982-2990.	2.6	62
64	TRPM2 Is Elevated in the tMCAO Stroke Model, Transcriptionally Regulated, and Functionally Expressed in C13 Microglia. Journal of Receptor and Signal Transduction Research, 2006, 26, 179-198.	2.5	72
65	Properties of voltage-gated Na+ channels in the human rhabdomyosarcoma cell-line SJ-RH30: Conventional and automated patch clamp analysis. Pharmacological Research, 2006, 54, 118-128.	7.1	6
66	A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations. Neuropharmacology, 2006, 50, 47-56.	4.1	21
67	Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones. Neuropharmacology, 2006, 50, 89-97.	4.1	54
68	KCNQ/Kv7 Channel Regulation of Hippocampal Gamma-Frequency Firing in the Absence of Synaptic Transmission. Journal of Neurophysiology, 2006, 95, 3105-3112.	1.8	13
69	Inhibition of Ih reduces epileptiform activity in rodent hippocampal slices. Synapse, 2006, 59, 308-316.	1.2	11
70	Discovery of SB-705498: A potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3287-3291.	2.2	125
71	TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. European Journal of Pharmacology, 2006, 540, 73-81.	3.5	63
72	Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices expressing a C-terminal truncated GABAB2 receptor subunit. Epilepsy Research, 2005, 65, 41-51.	1.6	9

#	Article	IF	CITATIONS
73	Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). British Journal of Pharmacology, 2005, 144, 781-790.	5.4	253
74	Synaptic transmission and synchronous activity is disrupted in hippocampal slices taken from aged TAS10 mice. Hippocampus, 2005, 15, 110-117.	1.9	34
75	Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro. Synapse, 2005, 55, 262-269.	1.2	68
76	Conservation of Functional and Pharmacological Properties in the Distantly Related Temperature Sensors TRPV1 and TRPM8. Molecular Pharmacology, 2005, 68, 518-527.	2.3	148
77	Characterization of the human HCN1 channel and its inhibition by capsazepine. British Journal of Pharmacology, 2004, 143, 411-421.	5.4	47
78	The GABAB2 subunit is critical for the trafficking and function of native GABAB receptors. Biochemical Pharmacology, 2004, 68, 1655-1666.	4.4	41
79	AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. Journal of Neurochemistry, 2004, 88, 1272-1282.	3.9	131
80	Discovery of small molecule antagonists of TRPV1. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3631-3634.	2.2	66
81	Modulation of hippocampal excitability by 5-HT4 receptor agonists persists in a transgenic model of Alzheimer's disease. Neuroscience, 2004, 129, 49-54.	2.3	33
82	Inhibition of α1E Ca2+ Channels by Carbonic Anhydrase Inhibitors. Journal of Pharmacological Sciences, 2004, 95, 240-247.	2.5	36
83	Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. European Journal of Pharmacology, 2003, 467, 77-80.	3.5	53
84	Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices of GABAB1 receptor subunit knockout mice. Epilepsy Research, 2003, 57, 121-136.	1.6	27
85	Cloning and Functional Expression of Human Short TRP7, a Candidate Protein for Store-operated Ca2+ Influx. Journal of Biological Chemistry, 2002, 277, 12302-12309.	3.4	109
86	Complex interactions between mGluR1 and mGluR5 shape neuronal network activity in the rat hippocampus. Neuropharmacology, 2002, 43, 131-140.	4.1	13
87	mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Molecular Brain Research, 2002, 109, 95-104.	2.3	282
88	The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends in Pharmacological Sciences, 2002, 23, 183-191.	8.7	458
89	Epileptogenesis and Enhanced Prepulse Inhibition in GABAB1-Deficient Mice. Molecular and Cellular Neurosciences, 2001, 17, 1059-1070.	2.2	260
90	Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. European Journal of Pharmacology, 2001, 417, 51-58.	3.5	90

#	ARTICLE	IF	CITATIONS
91	Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 2000, 405, 183-187.	27.8	1,590
92	Voltage―and timeâ€dependent properties of the recombinant rat vanilloid receptor (rVR1). Journal of Physiology, 2000, 525, 747-759.	2.9	93
93	Potent inhibition of a recombinant low voltage-activated Ca2+ channel by SB-209712. European Journal of Pharmacology, 2000, 407, 53-60.	3.5	2
94	Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain, 2000, 88, 205-215.	4.2	271
95	Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Molecular Brain Research, 2000, 82, 74-83.	2.3	86
96	Modulation of the deactivation kinetics of a recombinant rat T-type Ca2+ channel by prior inactivation. Neuroscience Letters, 2000, 293, 216-220.	2.1	9
97	Recent Advances in the Molecular Understanding of Voltage-Gated Ca2+ Channels. Molecular and Cellular Neurosciences, 1999, 14, 255-272.	2.2	80
98	Chapter 6 Neuronal calcium channels encoded by the $\hat{l}\pm 1A$ subunit and their contribution to excitatory synaptic transmission in the CNS. Progress in Brain Research, 1995, 105, 65-78.	1.4	47
99	11 Distinctive properties of a neuronal calcium channel and its contribution to excitatory synaptic transmission in the central nervous system. Advances in Second Messenger and Phosphoprotein Research, 1994, 29, 155-171.	4.5	21
100	Functional expression of a rapidly inactivating neuronal calcium channel. Nature, 1993, 363, 455-458.	27.8	257
101	Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature,	27.8	357