Kishore K Wary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1845661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperoxia-induced S1P1 signaling reduced angiogenesis by suppression of TIE-2 leading to experimental bronchopulmonary dysplasia. Cell Biochemistry and Biophysics, 2021, 79, 561-573.	1.8	7
2	TIRAP in the Mechanism of Inflammation. Frontiers in Immunology, 2021, 12, 697588.	4.8	34
3	Macrophage neuronal nitric oxide synthase (NOS1) controls the inflammatory response and foam cell formation in atherosclerosis. International Immunopharmacology, 2020, 83, 106382.	3.8	23
4	Tumor-derived exosomes in the regulation of macrophage polarization. Inflammation Research, 2020, 69, 435-451.	4.0	153
5	Low-Level Nanog Expression in the Regulation of Quiescent Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2244-2264.	2.4	3
6	LDL induces cholesterol loading and inhibits endothelial proliferation and angiogenesis in Matrigels: correlation with impaired angiogenesis during wound healing. American Journal of Physiology - Cell Physiology, 2020, 318, C762-C776.	4.6	18
7	Inhibition of the TIRAP-c-Jun interaction as a therapeutic strategy for AP1-mediated inflammatory responses. International Immunopharmacology, 2019, 71, 188-197.	3.8	11
8	Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Reports, 2019, 29, 3472-3487.e4.	6.4	41
9	Exosomes in the Regulation of Vascular Endothelial Cell Regeneration. Frontiers in Cell and Developmental Biology, 2019, 7, 353.	3.7	56
10	The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model. Journal of Biological Chemistry, 2017, 292, 20785-20798.	3.4	22
11	oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading. American Journal of Physiology - Cell Physiology, 2017, 313, C340-C351.	4.6	22
12	Chromatin-modifying agents convert fibroblasts to OCT4+ and VEGFR-2+ capillary tube-forming cells. PLoS ONE, 2017, 12, e0176496.	2.5	4
13	Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovascular Research, 2016, 111, 105-118.	3.8	19
14	Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. Journal of Lipid Research, 2016, 57, 791-808.	4.2	44
15	Integrin α6β1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells, 2015, 33, 1719-1729.	3.2	27
16	Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Stem Cell Reports, 2015, 5, 10-21.	4.8	40
17	Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells. Methods in Molecular Biology, 2015, 1357, 311-327.	0.9	17
18	HIF2α signaling inhibits adherens junctional disruption in acute lung injury. Journal of Clinical Investigation, 2015, 125, 652-664.	8.2	105

KISHORE K WARY

#	Article	IF	CITATIONS
19	Low-Dose 6-Bromoindirubin-3′-oxime Induces Partial Dedifferentiation of Endothelial Cells to Promote Increased Neovascularization. Stem Cells, 2014, 32, 1538-1552.	3.2	18
20	Role of c-Met/Phosphatidylinositol 3-Kinase (PI3k)/Akt Signaling in Hepatocyte Growth Factor (HGF)-mediated Lamellipodia Formation, Reactive Oxygen Species (ROS) Generation, and Motility of Lung Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 13476-13491.	3.4	73
21	KIF13B regulates angiogenesis through golgi-plasma membrane trafficking of VEGFR2. Journal of Cell Science, 2014, 127, 4518-30.	2.0	40
22	Endothelial invasive response in a co-culture model with physically-induced osteodifferentiation. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 621-630.	2.7	12
23	Flk1+ and VE-Cadherin+ Endothelial Cells Derived from iPSCs Recapitulates Vascular Development during Differentiation and Display Similar Angiogenic Potential as ESC-Derived Cells. PLoS ONE, 2013, 8, e85549.	2.5	27
24	Focal adhesion kinase regulation of neovascularization. Microvascular Research, 2012, 83, 64-70.	2.5	24
25	Suicide Gene Reveals the Myocardial Neovascularization Role of Mesenchymal Stem Cells Overexpressing CXCR4 (MSCCXCR4). PLoS ONE, 2012, 7, e46158.	2.5	25
26	Wnt Signaling Mediates Deâ€differentiation of Endothelial Cells during Neovascularization. FASEB Journal, 2012, 26, 1121.1.	0.5	0
27	Tieâ€2â€Creâ€mediated Inactivation of Lipid phosphate phosphatase (Lpp)â€3 Results in Vascular Defects. FASEB Journal, 2012, 26, 841.1.	0.5	0
28	NANOG induction of fetal liver kinase-1 (FLK1) transcription regulates endothelial cell proliferation and angiogenesis. Blood, 2011, 117, 1761-1769.	1.4	39
29	Lipid phosphate phosphatase-3 regulates tumor growth via β-catenin and Cyclin-D1 signaling. Molecular Cancer, 2011, 10, 51.	19.2	21
30	Lipid Phosphate Phosphatase 3 Stabilization of β-Catenin Induces Endothelial Cell Migration and Formation of Branching Point Structures. Molecular and Cellular Biology, 2010, 30, 1593-1606.	2.3	41
31	Krüppel-Like Factor-4 Transcriptionally Regulates VE-Cadherin Expression and Endothelial Barrier Function. Circulation Research, 2010, 107, 959-966.	4.5	100
32	Requirement of a4b1 and a5b1 Integrin Expression in Boneâ€Marrow Derived Progenitor Cells in Preventing Endotoxinâ€Induced Lung Vascular Injury and Edema in Mice. FASEB Journal, 2010, 24, 39.5.	0.5	0
33	Bone Marrow Progenitor Cells Induce Endothelial Adherens Junction Integrity by Sphingosine-1-Phosphate–Mediated Rac1 and Cdc42 Signaling. Circulation Research, 2009, 105, 696-704.	4.5	51
34	Requirement of α4β1and α5β1Integrin Expression in Bone-Marrow Derived Progenitor Cells in Preventing Endotoxin-Induced Lung Vascular Injury and Edema in Mice. Stem Cells, 2009, 27, N/A-N/A.	3.2	29
35	Role of Nox2-Based NADPH Oxidase in Bone Marrow and Progenitor Cell Function Involved in Neovascularization Induced by Hindlimb Ischemia. Circulation Research, 2008, 103, 212-220.	4.5	173
36	Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress. Molecular and Cellular Biology, 2006, 26, 9517-9532.	2.3	264

KISHORE K WARY

#	Article	IF	CITATIONS
37	Recognizing scientific excellence in the biology of cell adhesion. Cell Communication and Signaling, 2005, 3, 7.	6.5	2
38	Anti-lipid phosphate phosphohydrolase-3 (LPP3) antibody inhibits bFGF- and VEGF-induced capillary morphogenesis of endothelial cells. Cell Communication and Signaling, 2005, 3, 9.	6.5	23
39	A Novel Binding Site in Collagen Type III for Integrins α1β1 and α2β1. Journal of Biological Chemistry, 2005, 280, 32512-32520.	3.4	92
40	A Streptococcal Collagen-like Protein Interacts with the α2β1 Integrin and Induces Intracellular Signaling. Journal of Biological Chemistry, 2005, 280, 13848-13857.	3.4	95
41	Murine lipid phosphate phosphohydrolase-3 acts as a cell-associated integrin ligand. Biochemical and Biophysical Research Communications, 2005, 335, 906-919.	2.1	28
42	Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. Vol. 278 (2003) 20716-20723. Journal of Biological Chemistry, 2005, 280, 26640.	3.4	1
43	Transforming growth factor β regulates cell–cell adhesion through extracellular matrix remodeling and activation of focal adhesion kinase in human colon carcinoma Moser cells. Oncogene, 2004, 23, 5558-5561.	5.9	65
44	Molecular targets for anti-angiogenic therapy. Current Opinion in Molecular Therapeutics, 2004, 6, 54-70.	2.8	12
45	Regulation of cell-cell interactions by phosphatidic acid phosphatase 2b/VCIP. EMBO Journal, 2003, 22, 1539-1554.	7.8	63
46	Src kinase has a central role in in vitro cellular internalization of Staphylococcus aureus. Cellular Microbiology, 2003, 5, 417-426.	2.1	54
47	Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Molecular Cancer, 2003, 2, 25.	19.2	76
48	Signaling through Raf-1 in the neovasculature and target validation by nanoparticles. Molecular Cancer, 2003, 2, 27.	19.2	6
49	Fyn Binds to and Phosphorylates the Kidney Slit Diaphragm Component Nephrin. Journal of Biological Chemistry, 2003, 278, 20716-20723.	3.4	209
50	Distinct Roles of the Adaptor Protein Shc and Focal Adhesion Kinase in Integrin Signaling to ERK. Journal of Biological Chemistry, 2000, 275, 36532-36540.	3.4	150
51	Biochemical Analysis of Integrin-Mediated Shc Signaling. , 1999, 129, 35-50.		17
52	Integrin-mediated Activation of Focal Adhesion Kinase Is Required for Signaling to Jun NH2-terminal Kinase and Progression through the G1 Phase of the Cell Cycle. Journal of Cell Biology, 1999, 145, 1461-1470.	5.2	257
53	The adapter protein Shc couples a class of integrins to the control of the cell cycle. Kidney International, 1999, 56, 1189.	5.2	0
54	A Requirement for Caveolin-1 and Associated Kinase Fyn in Integrin Signaling and Anchorage-Dependent Cell Growth. Cell, 1998, 94, 625-634.	28.9	675

KISHORE K WARY

#	Article	IF	CITATIONS
55	Integrin α1β1 Mediates a Unique Collagen-dependent Proliferation Pathway In Vivo. Journal of Cell Biology, 1998, 142, 587-594.	5.2	275
56	The coupling of $\hat{I}\pm 6\hat{I}^2$ 4integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO Journal, 1997, 16, 2365-2375.	7.8	297
57	The Adaptor Protein Shc Couples a Class of Integrins to the Control of Cell Cycle Progression. Cell, 1996, 87, 733-743.	28.9	732
58	Familial uveal melanoma: absence of germline mutations involving the cyclin-dependent kinase-4 inhibitor gene (p16). Ophthalmic Genetics, 1996, 17, 39-40.	1.2	27
59	Cytogenetic findings in primary uveal melanoma. Cancer Genetics and Cytogenetics, 1994, 72, 109-115.	1.0	59
60	Study of unscheduled DNA synthesis following exposure of human cells to arecoline and extracts of betel nut in vitro. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1992, 278, 271-276.	1.2	34
61	Cytotoxic and cytostatic effects of arecoline and sodium nitrite on human cellsin vitro. International Journal of Cancer, 1991, 47, 396-400.	5.1	31
62	Aqueous extract of betel-nut of North-East India induces DNA-strand breaks and enhances rate of cell proliferation in vitro. Journal of Cancer Research and Clinical Oncology, 1988, 114, 579-582.	2.5	63
63	Effect of the radioprotector 2-mercaptopropionylglycine(MPG) on the radiation inactivation of catalase in vitro Journal of Radiation Research, 1988, 29, 104-109.	1.6	2
64	The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ, 0, 10, e13651.	2.0	11