
Richard H Ffrench-Constant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the remote sensing of insects. Biological Reviews, 2022, 97, 343-360.	10.4	30
2	Genome assembly of <i>Danaus chrysippus</i> and comparison with the Monarch <i>Danaus plexippus</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
3	Stepwise evolution of a butterfly supergene via duplication and inversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	24
4	Hybrid effects in field populations of the African monarch butterfly, <i>Danaus chrysippus</i> (L.) (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 2021, 133, 671-684.	1.6	1
5	Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Communications Biology, 2021, 4, 847.	4.4	55
6	Whole-chromosome hitchhiking driven by a male-killing endosymbiont. PLoS Biology, 2020, 18, e3000610.	5.6	44
7	Neo Sex Chromosomes, Colour Polymorphism and Male-Killing in the African Queen Butterfly, Danaus chrysippus (L.). Insects, 2019, 10, 291.	2.2	11
8	Optical Modelling and Phylogenetic Analysis Provide Clues to the Likely Function of Corneal Nipple Arrays in Butterflies and Moths. Insects, 2019, 10, 262.	2.2	5
9	Temperatureâ€driven selection on metabolic traits increases the strength of an algal–grazer interaction in naturally warmed streams. Global Change Biology, 2018, 24, 1793-1803.	9.5	36
10	Does resistance really carry a fitness cost?. Current Opinion in Insect Science, 2017, 21, 39-46.	4.4	129
11	Karyotypes versus Genomes: The Nymphalid Butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus. Cytogenetic and Genome Research, 2017, 153, 46-53.	1.1	17
12	Metabolic compensation constrains the temperature dependence of gross primary production. Ecology Letters, 2017, 20, 1250-1260.	6.4	73
13	A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160821.	2.6	44
14	Ion channels as insecticide targets. Journal of Neurogenetics, 2016, 30, 163-177.	1.4	84
15	Butterfly gene flow goes berserk. Genome Biology, 2016, 17, 30.	8.8	0
16	Light pollution is associated with earlier tree budburst across the United Kingdom. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160813.	2.6	91
17	White butterflies as solar photovoltaic concentrators. Scientific Reports, 2015, 5, 12267.	3.3	36
18	What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket. PLoS ONE, 2015, 10, e0140191.	2.5	8

#	Article	IF	CITATIONS
19	From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity. PLoS ONE, 2015, 10, e0144937.	2.5	33
20	Sex, butterflies and molecular biology: when pigmentation met mimicry. Pigment Cell and Melanoma Research, 2014, 27, 507-508.	3.3	0
21	Insecticide resistance comes of age. Genome Biology, 2014, 15, 106.	9.6	8
22	Of monarchs and migration. Nature, 2014, 514, 314-315.	27.8	1
23	Photorhabdus Toxins. Advances in Insect Physiology, 2014, , 343-388.	2.7	7
24	The Molecular Genetics of Insecticide Resistance. Genetics, 2013, 194, 807-815.	2.9	238
25	WING SHAPE VARIATION ASSOCIATED WITH MIMICRY IN BUTTERFLIES. Evolution; International Journal of Organic Evolution, 2013, 67, 2323-2334.	2.3	26
26	Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biology Letters, 2013, 9, 20130376.	2.3	62
27	Xentrivalpeptides A–Q: Depsipeptide Diversification inXenorhabdus. Journal of Natural Products, 2012, 75, 1717-1722.	3.0	18
28	Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature, 2011, 477, 203-206.	27.8	509
29	Butterflies on the brink: habitat requirements for declining populations of the marsh fritillary (Euphydryas aurinia) in SW England. Journal of Insect Conservation, 2011, 15, 153-163.	1.4	31
30	Homology modelling of <i>Drosophila</i> cytochrome P450 enzymes associated with insecticide resistance. Pest Management Science, 2010, 66, 1106-1115.	3.4	52
31	Sacred sites as hotspots for biodiversity: the Three Sisters Cave complex in coastal Kenya. Oryx, 2010, 44, 118.	1.0	30
32	The KdpD/KdpE two-component system of Photorhabdus asymbiotica promotes bacterial survival within M. sexta hemocytes. Journal of Invertebrate Pathology, 2010, 105, 352-362.	3.2	14
33	Dissecting the immune response to the entomopathogen Photorhabdus. Trends in Microbiology, 2010, 18, 552-560.	7.7	70
34	Drosophila Embryos as Model Systems for Monitoring Bacterial Infection in Real Time. PLoS Pathogens, 2009, 5, e1000518.	4.7	70
35	Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics, 2009, 10, 302.	2.8	96
36	A single locus from the entomopathogenic bacterium <i>Photorhabdus luminescens</i> inhibits activated <i>Manduca sexta</i> phenoloxidase. FEMS Microbiology Letters, 2009, 293, 170-176.	1.8	21

#	Article	IF	CITATIONS
37	Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. Insect Biochemistry and Molecular Biology, 2009, 39, 403-413.	2.7	78
38	Offspring sex ratio in the sequentially polygamous Penduline Tit Remiz pendulinus. Journal of Ornithology, 2008, 149, 521-527.	1.1	10
39	Dissecting the insecticide-resistance- associated cytochrome P450 geneCyp6g1. Pest Management Science, 2008, 64, 639-645.	3.4	42
40	A Drosophila systems approach to xenobiotic metabolism. Physiological Genomics, 2007, 30, 223-231.	2.3	139
41	An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2419-2424.	7.1	199
42	Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 2007, 49, 436-451.	1.6	229
43	Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology, 2007, 37, 512-519.	2.7	199
44	<i>Cis</i> -Regulatory Elements in the <i>Accord</i> Retrotransposon Result in Tissue-Specific Expression of the <i>Drosophila melanogaster</i> Insecticide Resistance Gene <i>Cyp6g1</i> . Genetics, 2007, 175, 1071-1077.	2.9	233
45	The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cellular Microbiology, 2007, 9, 2470-2484.	2.1	44
46	A nematode symbiont sheds light on invertebrate immunity. Trends in Parasitology, 2007, 23, 514-517.	3.3	22
47	Which came first: insecticides or resistance?. Trends in Genetics, 2007, 23, 1-4.	6.7	45
48	RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Developmental and Comparative Immunology, 2006, 30, 1099-1107.	2.3	109
49	Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: Roles of immune-related proteins shown by RNA interference. Insect Biochemistry and Molecular Biology, 2006, 36, 517-525.	2.7	108
50	Xenobiotic response in Drosophila melanogaster: Sex dependence of P450 and GST gene induction. Insect Biochemistry and Molecular Biology, 2006, 36, 674-682.	2.7	138
51	Nematode Symbiont for <i>Photorhabdus asymbiotica</i> . Emerging Infectious Diseases, 2006, 12, 1562-1564.	4.3	69
52	Characterization of 36 polymorphic microsatellite loci in the Kentish plover (Charadrius) Tj ETQq0 0 0 rgBT /Overl Molecular Ecology Notes, 2006, 7, 35-39.	ock 10 Tf 1.7	50 147 Td (a 45
53	Methoxy-resorufin ether as an electrochemically active biological probe for cytochrome P450 O-demethylation. Bioelectrochemistry, 2006, 68, 67-71.	4.6	13

An ABC guide to the bacterial toxin complexes. Advances in Applied Microbiology, 2006, 58, 169-83. 2.4 20

#	Article	IF	CITATIONS
55	ThePhotorhabdusPir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiology Letters, 2005, 245, 47-52.	1.8	112
56	DDT resistance in flies carries no cost. Current Biology, 2005, 15, R587-R589.	3.9	78
57	An ABC Guide to the Bacterial Toxin Complexes. Advances in Applied Microbiology, 2005, 58C, 169-183.	2.4	90
58	Insect pathogenicity islands in the insect pathogenic bacterium Photorhabdus. Physiological Entomology, 2004, 29, 240-250.	1.5	26
59	Isolation and Characterization of Microsatellite Markers from the Endangered Karner Blue Butterfly Lycaeides Melissa Samuelis (Lepidoptera). Hereditas, 2004, 134, 271-273.	1.4	16
60	The genetics and genomics of insecticide resistance. Trends in Genetics, 2004, 20, 163-170.	6.7	336
61	Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes and Infection, 2004, 6, 229-237.	1.9	93
62	The insecticidal toxin Makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiology Letters, 2003, 229, 265-270.	1.8	56
63	<i>Photorhabdus</i> : towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiology Reviews, 2003, 26, 433-456.	8.6	213
64	Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiology Reviews, 2003, 26, 433-456.	8.6	3
65	Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. Microbiology (United Kingdom), 2003, 149, 1581-1591.	1.8	53
66	Genomic islands in Photorhabdus. Trends in Microbiology, 2002, 10, 541-545.	7.7	71
67	The tc genes of Photorhabdus: a growing family. Trends in Microbiology, 2001, 9, 185-191.	7.7	205
68	Oral Toxicity of Photorhabdus luminescens W14 Toxin Complexes in Escherichia coli. Applied and Environmental Microbiology, 2001, 67, 5017-5024.	3.1	61
69	Insect Pigmentation: Activities of beta-Alanyldopamine Synthase in Wing Color Patterns of Wild-Type and Melanic Mutant Swallowtail Butterfly Papilio glaucus1. Pigment Cell & Melanoma Research, 2000, 13, 54-58.	3.6	50
70	Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Development Genes and Evolution, 2000, 210, 536-544.	0.9	60
71	Resistance to xenobiotics and parasites: can we count the cost?. Trends in Ecology and Evolution, 2000, 15, 378-383.	8.7	272
72	Cyclodiene Insecticide Resistance: From Molecular to Population Genetics. Annual Review of Entomology, 2000, 45, 449-466.	11.8	191

#	Article	IF	CITATIONS
73	Multiple Origins of Cyclodiene Insecticide Resistance in Tribolium castaneum (Coleoptera:) Tj ETQq1 1 0.784314	rgBT /Ove	rlggk 10 Tf 5
74	Insecticidal Toxins from the Bacterium <i>Photorhabdus luminescens</i> . Science, 1998, 280, 2129-2132.	12.6	395
75	A Novel Insecticidal Toxin from <i>Photorhabdus luminescens</i> , Toxin Complex a (Tca), and Its Histopathological Effects on the Midgut of <i>Manduca sexta</i> . Applied and Environmental Microbiology, 1998, 64, 3036-3041.	3.1	143
76	GABA Receptor Minigene Rescues Insecticide Resistance Phenotypes inDrosophila. Journal of Molecular Biology, 1995, 253, 223-227.	4.2	13
77	Drosophila ?-Aminobutyric Acid Receptor Gene Rdl Shows Extensive Alternative Splicing. Journal of Neurochemistry, 1993, 60, 2323-2326.	3.9	81
78	A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature, 1993, 363, 449-451.	27.8	520
79	The combined use of immunoassay and a DNA diagnostic technique to identify insecticide-resistant genotypes in the peach-potato aphid, Myzus persicae (Sulz.). Pesticide Biochemistry and Physiology, 1989, 34, 174-178.	3.6	16
80	Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Letters, 1989, 243, 323-327.	2.8	91