Dingzhong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1845156/publications.pdf

Version: 2024-02-01

92 papers

20,312 citations

47006 47 h-index 93 g-index

95 all docs 95
docs citations

95 times ranked 34578 citing authors

#	Article	IF	CITATIONS
1	A NAC Transcription Factor TuNAC69 Contributes to ANK-NLR-WRKY NLR-Mediated Stripe Rust Resistance in the Diploid Wheat Triticum urartu. International Journal of Molecular Sciences, 2022, 23, 564.	4.1	9
2	Magnaporthe oryzae Transcription Factor MoBZIP3 Regulates Appressorium Turgor Pressure Formation during Pathogenesis. International Journal of Molecular Sciences, 2022, 23, 881.	4.1	6
3	BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. Plant Cell, 2022, 34, 1768-1783.	6.6	22
4	The 14â€3â€3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant, Cell and Environment, 2022, 45, 1065-1081.	5.7	11
5	Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. Plant Communications, 2022, , 100304.	7.7	4
6	Diversity and similarity of wheat powdery mildew resistance among three allelic functional genes at the <i>Pm60</i> locus. Plant Journal, 2022, 110, 1781-1790.	5.7	11
7	Phosphorylation of OsTGA5 by casein kinase II compromises its suppression of defense-related gene transcription in rice. Plant Cell, 2022, 34, 3425-3442.	6.6	6
8	TuRLK1, a leucine-rich repeat receptor-like kinase, is indispensable for stripe rust resistance of YrU1 and confers broad resistance to multiple pathogens. BMC Plant Biology, 2022, 22, .	3.6	4
9	<i>Arabidopsis</i> E3 ligase KEG associates with and ubiquitinates MKK4 and MKK5 to regulate plant immunity. Journal of Integrative Plant Biology, 2021, 63, 327-339.	8.5	48
10	A Truncated TIR-NBS Protein TN10 Pairs with Two Clustered TIR-NBS-LRR Immune Receptors and Contributes to Plant Immunity in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 4004.	4.1	9
11	Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. Plant, Cell and Environment, 2021, 44, 3103-3121.	5.7	23
12	The TIRâ€NBS protein TN13 associates with the CCâ€NBS‣RR resistance protein RPS5 and contributes to RPS5â€triggered immunity in Arabidopsis. Plant Journal, 2021, 107, 775-786.	5.7	11
13	The truncated TNL receptor TN2â€mediated immune responses require ADR1 function. Plant Journal, 2021, 108, 672-689.	5.7	9
14	Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus <i>Magnaporthe oryzae</i> Molecular Plant Pathology, 2021, 22, 1641-1655.	4.2	4
15	The OsSPK1–OsRac1–RAI1 defense signaling pathway is shared by two distantly related NLR proteins in rice blast resistance. Plant Physiology, 2021, 187, 2852-2864.	4.8	5
16	Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 2020, 62, 2-24.	8.5	152
17	OsExo70B1 Positively Regulates Disease Resistance to Magnaporthe oryzae in Rice. International Journal of Molecular Sciences, 2020, 21, 7049.	4.1	14
18	Identification and application of the Pigmâ€l gene in rice disease resistance breeding. Plant Biology, 2020, 22, 1022-1029.	3.8	4

#	Article	IF	Citations
19	Transcriptome analysis of different rice cultivars provides novel insights into the rice response to bacterial leaf streak infection. Functional and Integrative Genomics, 2020, 20, 681-693.	3.5	7
20	Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathogens, 2020, 16, e1008437.	4.7	94
21	An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications, 2020, $11,1353$.	12.8	89
22	The <i>Arabidopsis</i> exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytologist, 2020, 227, 529-544.	7.3	59
23	The Pseudomonas Syringae Effector AvrPtoB Associates With and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. Frontiers in Plant Science, 2019, 10, 1027.	3.6	40
24	Two Arabidopsis Receptor-like Cytoplasmic Kinases SZE1 and SZE2 Associate with the ZAR1–ZED1 Complex and Are Required for Effector-Triggered Immunity. Molecular Plant, 2019, 12, 967-983.	8.3	55
25	Mechanism of plant immune activation and signaling: Insight from the first solved plant resistosome structure. Journal of Integrative Plant Biology, 2019, 61, 902-907.	8.5	4
26	TCP transcription factors interact with ZED1â€related kinases as components of the temperatureâ€regulated immunity. Plant, Cell and Environment, 2019, 42, 2045-2056.	5.7	15
27	RECEPTOR-LIKE KINASE 902 Associates with and Phosphorylates BRASSINOSTEROID-SIGNALING KINASE1 to Regulate Plant Immunity. Molecular Plant, 2019, 12, 59-70.	8.3	53
28	BRASSINOSTEROID-SIGNALING KINASE1 Phosphorylates MAPKKK5 to Regulate Immunity in Arabidopsis. Plant Physiology, 2018, 176, 2991-3002.	4.8	111
29	The <scp>NB</scp> â€ <scp>LRR</scp> gene <i>Pm60</i> confers powdery mildew resistance in wheat. New Phytologist, 2018, 218, 298-309.	7.3	157
30	The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis. Molecular Plant Pathology, 2018, 19, 1377-1390.	4.2	32
31	Transcriptional Regulation of the Immune Receptor FLS2 Controls the Ontogeny of Plant Innate Immunity. Plant Cell, 2018, 30, 2779-2794.	6.6	59
32	miR-142-3p Inhibits the Metastasis of Hepatocellular Carcinoma Cells by Regulating HMGB1 Gene Expression. Current Molecular Medicine, 2018, 18, 135-141.	1.3	24
33	Assessment of Posttranslational Modifications of ATG proteins. Methods in Enzymology, 2017, 587, 171-188.	1.0	4
34	<i>Arabidopsis</i> ZED1â€related kinases mediate the temperatureâ€sensitive intersection of immune response and growth homeostasis. New Phytologist, 2017, 215, 711-724.	7.3	21
35	<i>Arabidopsis</i> glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5749-5754.	7.1	85
36	Simultaneous modification of three homoeologs of <i>Ta<scp>EDR</scp>1</i> by genome editing enhances powdery mildew resistance in wheat. Plant Journal, 2017, 91, 714-724.	5.7	403

#	Article	IF	CITATIONS
37	Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356, 1172-1175.	12.6	584
38	CALCIUM-DEPENDENT PROTEIN KINASE5 Associates with the Truncated NLR Protein TIR-NBS2 to Contribute to <i>exo70B1-</i> Mediated Immunity. Plant Cell, 2017, 29, 746-759.	6.6	87
39	Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell, 2017, 29, 618-637.	6.6	552
40	Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance. Frontiers in Plant Science, 2016, 7, 227.	3.6	25
41	Establishment and characterization of new wheat-Thinopyrum ponticum addition and translocation lines with resistance to Ug99 races. Journal of Genetics and Genomics, 2016, 43, 573-575.	3.9	15
42	Influence of void ratio on phase change of thermal energy storage for heat pipe receiver. Journal of Engineering Thermophysics, 2016, 25, 275-287.	1.4	2
43	Ferroptosis: process and function. Cell Death and Differentiation, 2016, 23, 369-379.	11.2	2,270
44	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
45	<scp>PEPR</scp> s spice up plant immunity. EMBO Journal, 2016, 35, 4-5.	7.8	7
46	You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia. Leukemia, 2015, 29, 517-525.	7.2	77
47	ENHANCED DISEASE RESISTANCE4 Associates with CLATHRIN HEAVY CHAIN2 and Modulates Plant Immunity by Regulating Relocation of EDR1 in Arabidopsis. Plant Cell, 2015, 27, 857-873.	6.6	78
48	A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant. PLoS Genetics, 2015, 11, e1004945.	3.5	127
49	The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Therapy, 2015, 22, 326-334.	4.6	133
50	The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC Plant Biology, 2015, 15, 49.	3.6	90
51	Release and activity of histone in diseases. Cell Death and Disease, 2014, 5, e1370-e1370.	6.3	324
52	RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death and Disease, 2014, 5, e1480-e1480.	6.3	66
53	EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity. PLoS Genetics, 2014, 10, e1004389.	3.5	136
54	Relocation of genes generates non-conserved chromosomal segments in Fusarium graminearumthat show distinct and co-regulated gene expression patterns. BMC Genomics, 2014, 15, 191.	2.8	27

#	Article	IF	Citations
55	The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene, 2014, 33, 567-577.	5.9	192
56	Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer. Cell Death and Disease, 2014, 5, e1504-e1504.	6.3	48
57	Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene, 2013, 527, 235-242.	2.2	27
58	RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics, 2013, 14, 21.	2.8	79
59	A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Reports, 2013, 32, 687-702.	5.6	25
60	Transgenic expression of an insect diapause-specific peptide (DSP) in Arabidopsis resists phytopathogenic fungal attacks. European Journal of Plant Pathology, 2013, 137, 93-101.	1.7	22
61	Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496, 87-90.	27.8	700
62	Autophagy Contributes to Leaf Starch Degradation Â. Plant Cell, 2013, 25, 1383-1399.	6.6	217
63	BSK1, a receptor-like cytoplasmic kinase, involved in both BR signaling and innate immunity in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e24996.	2.4	30
64	Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death and Disease, 2013, 4, e966-e966.	6.3	155
65	BR-SIGNALING KINASE1 Physically Associates with FLAGELLIN SENSING2 and Regulates Plant Innate Immunity in <i>Arabidopsis</i>	6.6	212
66	The THO/TREX complex functions in disease resistance in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 422-424.	2.4	9
67	SR1, a Calmodulin-Binding Transcription Factor, Modulates Plant Defense and Ethylene-Induced Senescence by Directly Regulating <i>NDR1</i> and <i>EIN3</i> Å Â Â. Plant Physiology, 2012, 158, 1847-1859.	4.8	149
68	PKR-Dependent Inflammatory Signals. Science Signaling, 2012, 5, pe47.	3.6	86
69	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
70	HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. Plant Journal, 2012, 69, 831-843.	5.7	52
71	RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant Journal, 2012, 71, 1015-1028.	5.7	56
72	Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. Journal of Genetics and Genomics, 2011, 38, 137-148.	3.9	36

#	Article	IF	Citations
73	EBR1, a Novel Zn ₂ Cys ₆ Transcription Factor, Affects Virulence and Apical Dominance of the Hyphal Tip in <i>Fusarium graminearum</i>). Molecular Plant-Microbe Interactions, 2011, 24, 1407-1418.	2.6	48
74	ATG2, an autophagyâ€related protein, negatively affects powdery mildew resistance and mildewâ€induced cell death in Arabidopsis. Plant Journal, 2011, 68, 74-87.	5.7	140
75	Apoptosis promotes early tumorigenesis. Oncogene, 2011, 30, 1851-1854.	5.9	54
76	The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation, 2011, 18, 571-580.	11.2	1,972
77	The autophagy gene, $\langle i \rangle$ ATG18a $\langle i \rangle$, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 1408-1410.	2.4	34
78	HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene, 2010, 29, 5299-5310.	5.9	421
79	<i>Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1</i> Â. Plant Cell, 2010, 22, 1749-1761.	6.6	40
80	An Fâ€box gene, <i>CPR30</i> , functions as a negative regulator of the defense response in Arabidopsis. Plant Journal, 2009, 60, 757-770.	5.7	108
81	Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance to Botrytis cinerea in Arabidopsis. Plant Physiology, 2007, 144, 1093-1103.	4.8	120
82	A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant Journal, 2006, 47, 75-84.	5.7	73
83	Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant Journal, 2005, 44, 245-257.	5.7	96
84	Regulation of Plant Disease Resistance, Stress Responses, Cell Death, and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase. Plant Physiology, 2005, 138, 1018-1026.	4.8	140
85	ThePseudomonas syringaetype III effector AvrRpt2 functions downstream or independently of SA to promote virulence onArabidopsis thaliana. Plant Journal, 2004, 37, 494-504.	5.7	57
86	Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant Journal, 2002, 32, 975-983.	5.7	72
87	Expressional profiling of genes related to pollination and fertilization in rice. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2001, 324, 1111-1116.	0.8	5
88	Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 373-378.	7.1	404
89	From the Cover: Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 373-378.	7.1	265
90	Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theoretical and Applied Genetics, 2000, 101, 286-291.	3.6	65

#	Article	IF	CITATIONS
91	Towards rice genome scanning by map-based AFLP fingerprinting. Molecular Genetics and Genomics, 1999, 261, 184-195.	2.4	11
92	Isolation of candidateR disease resistance genes from rice. Science Bulletin, 1998, 43, 497-500.	1.7	2