MarÃ-a Victoria LÃ³pez-RamÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1844567/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrocatalytic activity of calcined manganese ferrite solid nanospheres in the oxygen reduction reaction. Environmental Research, 2022, 204, 112126.	7.5	2
2	Photocatalytic Degradation of Organic Wastes in Water. Catalysts, 2022, 12, 114.	3.5	1
3	Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. Processes, 2021, 9, 175.	2.8	12
4	Remediation of water polluted with model endocrine disruptors based on adsorption processes. , 2021, , 75-112.		0
5	Physicochemical characteristics of calcined MnFe2O4 solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C7 asphaltenes with air. Journal of Environmental Management, 2021, 281, 111871.	7.8	20
6	Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126060.	4.7	9
7	Novel Organochlorinated Xerogels: From Microporous Materials to Ordered Domains. Polymers, 2021, 13, 1415.	4.5	3
8	Hybrid Xerogels: Study of the Sol-Gel Process and Local Structure by Vibrational Spectroscopy. Polymers, 2021, 13, 2082.	4.5	9
9	Manganese ferrite solid nanospheres solvothermally synthesized as catalyst for peroxymonosulfate activation to degrade and mineralize para-nitrophenol: Study of operational variables and catalyst reutilization. Journal of Environmental Chemical Engineering, 2021, 9, 105192.	6.7	13
10	Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO2 composite under UV radiation. Environmental Research, 2021, 200, 111750.	7.5	12
11	Marble Waste Sludges as Effective Nanomaterials for Cu (II) Adsorption in Aqueous Media. Nanomaterials, 2021, 11, 2305.	4.1	6
12	Life Cycle Assessment of Cement Production with Marble Waste Sludges. International Journal of Environmental Research and Public Health, 2021, 18, 10968.	2.6	11
13	Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal, 2020, 379, 122334.	12.7	59
14	Halide removal from water using silver doped magnetic-microparticles. Journal of Environmental Management, 2020, 253, 109731.	7.8	15
15	Degradation of the diuretic hydrochlorothiazide by UV/Solar radiation assisted oxidation processes. Journal of Environmental Management, 2020, 257, 109973.	7.8	13
16	Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment. Journal of Environmental Management, 2020, 255, 109927.	7.8	25
17	Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts, 2020, 10, 1485.	3.5	7
18	Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts, 2020, 10, 520.	3.5	71

#	Article	IF	CITATIONS
19	Solar Degradation of Sulfamethazine Using rGO/Bi Composite Photocatalysts. Catalysts, 2020, 10, 573.	3.5	13
20	Removal of Phenolic Compounds from Water Using Copper Ferrite Nanosphere Composites as Fenton Catalysts. Nanomaterials, 2019, 9, 901.	4.1	22
21	Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. Science of the Total Environment, 2019, 669, 767-776.	8.0	48
22	New Technologies to Remove Halides from Water: An Overview. Nanotechnology in the Life Sciences, 2019, , 147-180.	0.6	5
23	Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation. Science of the Total Environment, 2019, 650, 1207-1215.	8.0	23
24	Lanthanum-doped silica xerogels for the removal of fluorides from waters. Journal of Environmental Management, 2018, 213, 549-554.	7.8	18
25	Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. Arabian Journal of Chemistry, 2018, 11, 564-572.	4.9	13
26	Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. Journal of Colloid and Interface Science, 2018, 511, 193-202.	9.4	50
27	Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions. Applied Catalysis B: Environmental, 2016, 196, 207-215.	20.2	84
28	Photoactivity of organic xerogels and aerogels in the photodegradation of herbicides from waters. Applied Catalysis B: Environmental, 2016, 181, 94-102.	20.2	19
29	Effect of HO, SO4â^' and CO3â^'/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution. Chemical Engineering Journal, 2015, 267, 182-190.	12.7	51
30	Fenton oxidation of gallic and p-coumaric acids in water assisted by an activated carbon cloth. Water Science and Technology, 2015, 71, 789-794.	2.5	4
31	Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry. Chemical Engineering Journal, 2014, 255, 307-315.	12.7	31
32	Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. Journal of Colloid and Interface Science, 2013, 401, 116-124.	9.4	38
33	Growth and spontaneous differentiation of umbilical-cord stromal stem cells on activated carbon cloth. Journal of Materials Chemistry B, 2013, 1, 3359.	5.8	5
34	Competitive adsorption of the herbicide fluroxypyr and tannic acid from distilled and tap water on activated carbons and their thermal desorption. Adsorption, 2012, 18, 173-179.	3.0	12
35	Activated carbon cloth as adsorbent and oxidation catalyst forÂtheÂremoval of amitrole from aqueous solution. Adsorption, 2011, 17, 413-419.	3.0	18
36	Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water. Applied Catalysis B: Environmental, 2011, 101, 425-430.	20.2	60

#	Article	IF	CITATIONS
37	Adsorption Kinetics of Fluroxypyr Herbicide in Aqueous Solution onto Granular Activated Carbon. Separation Science and Technology, 2011, 46, 1582-1590.	2.5	0
38	Adsorption mechanisms of metal cations from water on an oxidized carbon surface. Journal of Colloid and Interface Science, 2010, 345, 461-466.	9.4	42
39	Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity. Water Research, 2010, 44, 879-885.	11.3	49
40	Adsorption and thermal desorption of the herbicide fluroxypyr on activated carbon fibers and cloth at different pH values. Journal of Colloid and Interface Science, 2009, 331, 2-7.	9.4	34
41	Activated carbon cloth as support for mesenchymal stem cell growth and differentiation to osteocytes. Carbon, 2009, 47, 3574-3577.	10.3	24
42	2-tert-Butylamino-4-chloro-6-ethylamino-1,3,5-triazine: a structure withZ′ = 4 containing two different molecular conformations and two independent chains of hydrogen-bondedR22(8) rings. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o463-o466.	0.4	1
43	Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons. Journal of Hazardous Materials, 2008, 156, 472-477.	12.4	66
44	Temperature dependence of the point of zero charge of oxidized and non-oxidized activated carbons. Carbon, 2008, 46, 778-787.	10.3	48
45	Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains. Water Research, 2007, 41, 2865-2870.	11.3	53
46	Effect of Surface Chemistry, Solution pH, and Ionic Strength on the Removal of Herbicides Diuron and Amitrole from Water by an Activated Carbon Fiber. Langmuir, 2007, 23, 1242-1247.	3.5	123
47	Temperature Dependence of Herbicide Adsorption from Aqueous Solutions on Activated Carbon Fiber and Cloth. Langmuir, 2006, 22, 9586-9590.	3.5	46
48	About the endothermic nature of the adsorption of the herbicide diuron from aqueous solutions on activated carbon fiber. Carbon, 2006, 44, 2335-2338.	10.3	47
49	A study of the static and dynamic adsorption of Zn(II) ions on carbon materials from aqueous solutions. Journal of Colloid and Interface Science, 2005, 288, 335-341.	9.4	66
50	Cadmium Ion Adsorption on Different Carbon Adsorbents from Aqueous Solutions. Effect of Surface Chemistry, Pore Texture, Ionic Strength, and Dissolved Natural Organic Matter. Langmuir, 2004, 20, 8142-8148.	3.5	104
51	lonic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon, 2003, 41, 2020-2022.	10.3	62
52	Adsorption of Phenol from Dilute and Concentrated Aqueous Solutions by Activated Carbons. Langmuir, 2003, 19, 9719-9723.	3.5	53
53	Phenol Adsorption from Dilute Aqueous Solutions by Carbons. Chimia, 2003, 57, 616-618.	0.6	8
54	Adsorption of Phenolic Compounds from Aqueous Solutions, by Activated Carbons, Described by the Dubininâ^'Astakhov Equation. Langmuir, 2001, 17, 3301-3306.	3.5	97

#	Article	lF	CITATIONS
55	Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon, 2001, 39, 869-875.	10.3	86
56	Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon, 2001, 39, 1415-1420.	10.3	159
57	Micropore sizes in activated carbons determined from the Dubinin–Radushkevich equation. Carbon, 2001, 39, 1115-1116.	10.3	80
58	Distribution of surface oxygen complexes on activated carbons from immersion calorimetry, titration and temperature-programmed desorption techniques. Carbon, 2001, 39, 2235-2237.	10.3	23
59	Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000, 38, 1995-2001.	10.3	765
60	Specific and non-specific interactions of water molecules with carbon surfaces from immersion calorimetry. Carbon, 2000, 38, 825-829.	10.3	79
61	Specific and Nonspecific Interactions between Methanol and Ethanol and Active Carbons. Langmuir, 2000, 16, 5967-5972.	3.5	47
62	On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 1999, 37, 1215-1221.	10.3	693
63	Determination of the Pore Size Distribution and Network Connectivity in Microporous Solids by Adsorption Measurements and Monte Carlo Simulation. Langmuir, 1997, 13, 4435-4445.	3.5	97
64	On the Carbon Dioxide and Benzene Adsorption on Activated Carbons To Study Their Micropore Structure. Langmuir, 1997, 13, 5208-5210.	3.5	20
65	Demineralization of a bituminous coal by froth flotation before obtaining activated carbons. Carbon, 1996, 34, 917-921.	10.3	11
66	Micropore Structure of Activated Carbons Prepared From a Spanish Subbituminous Coal Studied by CO2, Benzene, and Cyclohexane Adsorption. Langmuir, 1995, 11, 247-252.	3.5	17
67	Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon, 1995, 33, 845-851.	10.3	199
68	Thermal regeneration of an activated carbon exhausted with different substituted phenols. Carbon, 1995, 33, 1417-1423.	10.3	123
69	Activated carbons from a subbituminous coal: Pore texture and electrokinetic properties. Carbon, 1993, 31, 815-819.	10.3	36
70	Applicability of the Dubinin-Radushkevich equation to carbon dioxide adsorption on activated carbons. Langmuir, 1993, 9, 2758-2760.	3.5	62