Aiping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1844520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Image De-Raining Transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 12978-12995.	13.9	36
2	A Multiâ€sequence <scp>MRI</scp> Study in Parkinson's Disease: Association Between Rigidity and Myelin. Journal of Magnetic Resonance Imaging, 2022, 55, 451-462.	3.4	6
3	Effective Pan-Sharpening With Transformer and Invertible Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	18
4	Unknown Motion Rejection in Myoelectric Pattern Recognition Using Convolutional Prototype Network. IEEE Sensors Journal, 2022, 22, 4305-4314.	4.7	2
5	Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.9	8
6	Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-9.	3.7	27
7	A novel SSA-CCA framework for muscle artifact removal from ambulatory EEG. Virtual Reality & Intelligent Hardware, 2022, 4, 1-21.	3.2	3
8	Toward Open-World Electroencephalogram Decoding Via Deep Learning: A comprehensive survey. IEEE Signal Processing Magazine, 2022, 39, 117-134.	5.6	37
9	A novel consistency-based training strategy for seizure prediction. Journal of Neuroscience Methods, 2022, 372, 109557.	2.5	4
10	Image Fusion with Sparse Representation: A Novel Local Contrast-Based Preprocessing Strategy. , 2022, 6, 1-4.		4
11	Progressive Pan-Sharpening via Cross-Scale Collaboration Networks. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	3
12	Emotion Recognition From Multi-Channel EEG via Deep Forest. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 453-464.	6.3	123
13	A State-Dependent IVA Model for Muscle Artifacts Removal From EEG Recordings. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	4.7	8
14	Current perspectives on galvanic vestibular stimulation in the treatment of Parkinson's disease. Expert Review of Neurotherapeutics, 2021, 21, 405-418.	2.8	15
15	Interpatient ECG Heartbeat Classification with an Adversarial Convolutional Neural Network. Journal of Healthcare Engineering, 2021, 2021, 1-11.	1.9	11
16	Galvanic Vestibular Stimulation Improves Subnetwork Interactions in Parkinson's Disease. Journal of Healthcare Engineering, 2021, 2021, 1-11.	1.9	5
17	Galvanic Vestibular Stimulation: Data Analysis and Applications in Neurorehabilitation. IEEE Signal Processing Magazine, 2021, 38, 54-64.	5.6	3
18	Striatal Subdivisions Estimated via Deep Embedded Clustering With Application to Parkinson's Disease. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3564-3575.	6.3	6

Aiping Liu

#	Article	IF	CITATIONS
19	Muscle Artifact Removal Toward Mobile SSVEP-Based BCI: A Comparative Study. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	7
20	An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification. Frontiers in Neuroscience, 2021, 15, 828512.	2.8	4
21	Approximate Policy-Based Accelerated Deep Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1820-1830.	11.3	40
22	ReMAE: User-Friendly Toolbox for Removing Muscle Artifacts From EEG. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2105-2119.	4.7	30
23	ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network. Artificial Intelligence in Medicine, 2020, 106, 101856.	6.5	99
24	Both Stationary and Dynamic Functional Interhemispheric Connectivity Are Strongly Associated With Performance on Cognitive Tests in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 407.	2.4	9
25	Novel Regional Activity Representation With Constrained Canonical Correlation Analysis for Brain Connectivity Network Estimation. IEEE Transactions on Medical Imaging, 2020, 39, 2363-2373.	8.9	6
26	Learning Dual Transformation Networks for Image Contrast Enhancement. IEEE Signal Processing Letters, 2020, 27, 1999-2003.	3.6	12
27	Remove Diverse Artifacts Simultaneously From a Single-Channel EEG Based on SSA and ICA: A Semi-Simulated Study. IEEE Access, 2019, 7, 60276-60289.	4.2	30
28	Abnormal Phase Coupling in Parkinson's Disease and Normalization Effects of Subthreshold Vestibular Stimulation. Frontiers in Human Neuroscience, 2019, 13, 118.	2.0	18
29	Removal of Muscle Artifacts From the EEG: A Review and Recommendations. IEEE Sensors Journal, 2019, 19, 5353-5368.	4.7	66
30	Removal of EMG Artifacts from Multichannel EEG Signals Using Combined Singular Spectrum Analysis and Canonical Correlation Analysis. Journal of Healthcare Engineering, 2019, 2019, 1-13.	1.9	22
31	Dual Hypergraph Regularized PCA for Biclustering of Tumor Gene Expression Data. IEEE Transactions on Knowledge and Data Engineering, 2019, 31, 2292-2303.	5.7	8
32	Dynamic Graph Theoretical Analysis of Functional Connectivity in Parkinson's Disease: The Importance of Fiedler Value. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1720-1729.	6.3	34
33	The Use of Multivariate EMD and CCA for Denoising Muscle Artifacts From Few-Channel EEG Recordings. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 359-370.	4.7	130
34	Decreased subregional specificity of the putamen in Parkinson's Disease revealed by dynamic connectivity-derived parcellation. NeuroImage: Clinical, 2018, 20, 1163-1175.	2.7	20
35	Galvanic Vestibular Stimulation (GVS) Augments Deficient Pedunculopontine Nucleus (PPN) Connectivity in Mild Parkinson's Disease: fMRI Effects of Different Stimuli. Frontiers in Neuroscience, 2018, 12, 101.	2.8	29
36	Position-independent gesture recognition using sEMG signals via canonical correlation analysis. Computers in Biology and Medicine, 2018, 103, 44-54.	7.0	34

AIPING LIU

#	Article	IF	CITATIONS
37	Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Computers in Biology and Medicine, 2017, 88, 1-10.	7.0	40
38	A novel few-channel strategy for removing muscle artifacts from multichannel EEG data. , 2017, , .		8
39	A Combined Static and Dynamic Model for Resting-State Brain Connectivity Networks. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 1172-1181.	10.8	6
40	Joint time invariant and time dependent brain connectivity network estimation. , 2016, , .		0
41	Connectivity-based parcellation of functional SubROIs in putamen using a sparse spatially regularized regression model. Biomedical Signal Processing and Control, 2016, 27, 174-183.	5.7	5
42	Removing Muscle Artifacts From EEG Data: Multichannel or Single-Channel Techniques?. IEEE Sensors Journal, 2016, 16, 1986-1997.	4.7	97
43	A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors. Sensors, 2015, 15, 23303-23324.	3.8	44
44	A Sticky Weighted Regression Model for Time-Varying Resting-State Brain Connectivity Estimation. IEEE Transactions on Biomedical Engineering, 2015, 62, 501-510.	4.2	21
45	Network analysis of perception-action coupling in infants. Frontiers in Human Neuroscience, 2014, 8, 209.	2.0	16
46	A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG. Sensors, 2014, 14, 18370-18389.	3.8	67
47	Time varying brain connectivity modeling using FMRI signals. , 2014, , .		0
48	An EEMD-IVA Framework for Concurrent Multidimensional EEG and Unidimensional Kinematic Data Analysis. IEEE Transactions on Biomedical Engineering, 2014, 61, 2187-2198.	4.2	22
49	A Genetically Informed, Group fMRI Connectivity Modeling Approach: Application to Schizophrenia. IEEE Transactions on Biomedical Engineering, 2014, 61, 946-956.	4.2	12
50	Corticomuscular Activity Modeling by Combining Partial Least Squares and Canonical Correlation Analysis. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.9	7
51	A Computationally Efficient, Exploratory Approach to Brain Connectivity Incorporating False Discovery Rate Control,A PrioriKnowledge, and Group Inference. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-14.	1.3	7
52	An FDR-controlled, exploratory group modeling for assessing brain connectivity. , 2012, , .		2
53	Network modeling and analysis of lumbar muscle surface EMG signals during flexion–extension in individuals with and without low back pain. Journal of Electromyography and Kinesiology, 2011, 21, 913-921.	1.7	4