
Stephen C West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1844250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated genome and transcriptome analyses reveal the mechanism of genome instability in ataxia with oculomotor apraxia 2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
2	Generation of double Holliday junction DNAs and their dissolution/resolution within a chromatin context. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123420119.	3.3	6
3	Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Molecular Cell, 2021, 81, 767-783.e11.	4.5	72
4	Charles M. Radding: A love of science and art. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2025935118.	3.3	1
5	Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 157-177.	2.3	16
6	Targeting the nucleotide salvage factor DNPH1 sensitizes <i>BRCA</i> -deficient cells to PARP inhibitors. Science, 2021, 372, 156-165.	6.0	68
7	Tackling PARP inhibitor resistance. Trends in Cancer, 2021, 7, 1102-1118.	3.8	23
8	Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 2020, 586, 292-298.	13.7	95
9	MutSl ² Stimulates Holliday Junction Resolution by the SMX Complex. Cell Reports, 2020, 33, 108289.	2.9	23
10	Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nature Cell Biology, 2018, 20, 92-103.	4.6	149
11	A new class of ultrafine anaphase bridges generated by homologous recombination. Cell Cycle, 2018, 17, 2101-2109.	1.3	29
12	GEN1 Endonuclease: Purification and Nuclease Assays. Methods in Enzymology, 2018, 600, 527-542.	0.4	4
13	Preparation and Resolution of Holliday Junction DNA Recombination Intermediates. Methods in Enzymology, 2018, 600, 569-590.	0.4	3
14	The SMX DNA Repair Tri-nuclease. Molecular Cell, 2017, 65, 848-860.e11.	4.5	98
15	Resolution of single and double Holliday junction recombination intermediates by GEN1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 443-450.	3.3	32
16	Genome Instability as a Consequence of Defects in the Resolution of Recombination Intermediates. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 207-212.	2.0	15
17	Analysis of Structure-Selective Endonuclease Activities From Yeast and Human Extracts. Methods in Enzymology, 2017, 591, 271-286.	0.4	4
18	SMX makes the cut in genome stability. Oncotarget, 2017, 8, 102765-102766.	0.8	0

#	Article	IF	CITATIONS
19	Keeping homologous recombination in check. Cell Research, 2016, 26, 397-398.	5.7	6
20	GEN1 promotes Holliday junction resolution by a coordinated nick and counter-nick mechanism. Nucleic Acids Research, 2015, 43, 10882-10892.	6.5	32
21	Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease. Cell Reports, 2015, 10, 1467-1476.	2.9	28
22	Resolution of Recombination Intermediates: Mechanisms and Regulation. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 103-109.	2.0	95
23	Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Research, 2014, 42, 3833-3845.	6.5	50
24	Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nature Communications, 2014, 5, 4844.	5.8	80
25	Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes and Development, 2014, 28, 1124-1136.	2.7	106
26	Holliday junction processing enzymes as guardians of genome stability. Trends in Biochemical Sciences, 2014, 39, 409-419.	3.7	85
27	Holliday Junction Resolvases. Cold Spring Harbor Perspectives in Biology, 2014, 6, a023192-a023192.	2.3	165
28	Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nature Structural and Molecular Biology, 2014, 21, 962-968.	3.6	95
29	MUS81-EME2 Promotes Replication Fork Restart. Cell Reports, 2014, 7, 1048-1055.	2.9	119
30	Dual Control of Yen1 Nuclease Activity and Cellular Localization by Cdk and Cdc14 Prevents Genome Instability. Molecular Cell, 2014, 54, 94-106.	4.5	108
31	Holliday junction resolution: Regulation in space and time. DNA Repair, 2014, 19, 176-181.	1.3	124
32	Cell-Cycle Kinases Coordinate the Resolution of Recombination Intermediates with Chromosome Segregation. Cell Reports, 2013, 4, 76-86.	2.9	77
33	Coordinated Actions of SLX1-SLX4 and MUS81-EME1 for Holliday Junction Resolution in Human Cells. Molecular Cell, 2013, 52, 234-247.	4.5	252
34	DNA-dependent SUMO modification of PARP-1. DNA Repair, 2013, 12, 761-773.	1.3	24
35	Architecture and DNA Recognition Elements of the Fanconi Anemia FANCM-FAAP24 Complex. Structure, 2013, 21, 1648-1658.	1.6	26
36	Senataxin, Defective in the Neurodegenerative Disorder Ataxia with Oculomotor Apraxia 2, Lies at the Interface of Transcription and the DNA Damage Response. Molecular and Cellular Biology, 2013, 33, 406-417.	1.1	163

#	Article	IF	CITATIONS
37	Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange. Molecular and Cellular Biology, 2012, 32, 1592-1603.	1.1	58
38	The DNA translocase activity of FANCM protects stalled replication forks. Human Molecular Genetics, 2012, 21, 2005-2016.	1.4	71
39	Regulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis. Cell, 2011, 147, 158-172.	13.5	263
40	DNA interstrand crosslink repair and cancer. Nature Reviews Cancer, 2011, 11, 467-480.	12.8	847
41	Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature, 2011, 471, 642-646.	13.7	190
42	Functional overlap between the structure-specific nucleases Yen1 and Mus81-Mms4 for DNA-damage repair in S. cerevisiae. DNA Repair, 2010, 9, 394-402.	1.3	86
43	Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose). Nature Structural and Molecular Biology, 2010, 17, 241-243.	3.6	89
44	The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nature Structural and Molecular Biology, 2010, 17, 1263-1265.	3.6	217
45	InTERTpreting telomerase structure and function. Nucleic Acids Research, 2010, 38, 5609-5622.	6.5	146
46	The human Holliday junction resolvase GEN1 rescues the meiotic phenotype of a Schizosaccharomyces pombe mus81 mutant. Nucleic Acids Research, 2010, 38, 1866-1873.	6.5	51
47	RTEL-1 Enforces Meiotic Crossover Interference and Homeostasis. Science, 2010, 327, 1254-1258.	6.0	155
48	ldentification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2. Cell, 2010, 142, 65-76.	13.5	284
49	Mechanism of Holliday junction resolution by the human GEN1 protein. Genes and Development, 2010, 24, 1559-1569.	2.7	128
50	TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO Journal, 2009, 28, 641-651.	3.5	99
51	FANCM Connects the Genome Instability Disorders Bloom's Syndrome and Fanconi Anemia. Molecular Cell, 2009, 36, 943-953.	4.5	221
52	Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1. Science, 2009, 325, 1240-1243.	6.0	504
53	The search for a human Holliday junction resolvase. Biochemical Society Transactions, 2009, 37, 519-526.	1.6	47
54	Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature, 2008, 451, 81-85.	13.7	367

#	Article	IF	CITATIONS
55	Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453, 677-681.	13.7	220
56	Identification of Holliday junction resolvases from humans and yeast. Nature, 2008, 456, 357-361.	13.7	345
57	DNA Repair Synthesis Facilitates RAD52-Mediated Second-End Capture during DSB Repair. Molecular Cell, 2008, 29, 510-516.	4.5	109
58	FANCM and FAAP24 Function in ATR-Mediated Checkpoint Signaling Independently of the Fanconi Anemia Core Complex. Molecular Cell, 2008, 32, 313-324.	4.5	187
59	RTEL1 Maintains Genomic Stability by Suppressing Homologous Recombination. Cell, 2008, 135, 261-271.	13.5	315
60	Molecular Mechanism of DNA Deadenylation by the Neurological Disease Protein Aprataxin. Journal of Biological Chemistry, 2008, 283, 33994-34001.	1.6	33
61	More complexity to the Bloom's syndrome complex. Genes and Development, 2008, 22, 2737-2742.	2.7	33
62	Structural and Functional Relationships of the XPF/MUS81 Family of Proteins. Annual Review of Biochemistry, 2008, 77, 259-287.	5.0	244
63	RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16910-16915.	3.3	152
64	Actions of Aprataxin in Multiple DNA Repair Pathways. Journal of Biological Chemistry, 2007, 282, 9469-9474.	1.6	78
65	RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. Journal of Cell Biology, 2007, 176, 581-592.	2.3	118
66	Role of RAD51C and XRCC3 in Genetic Recombination and DNA Repair. Journal of Biological Chemistry, 2007, 282, 1973-1979.	1.6	101
67	Defective DNA Repair and Neurodegenerative Disease. Cell, 2007, 130, 991-1004.	13.5	295
68	Identification of FAAP24, a Fanconi Anemia Core Complex Protein that Interacts with FANCM. Molecular Cell, 2007, 25, 331-343.	4.5	264
69	Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1. EMBO Journal, 2007, 26, 2915-2922.	3.5	104
70	Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nature Structural and Molecular Biology, 2007, 14, 468-474.	3.6	240
71	The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature, 2006, 443, 713-716.	13.7	348
72	Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO Journal, 2006, 25, 222-231.	3.5	172

#	Article	IF	CITATIONS
73	Synthetic Junctions as Tools to Identify and Characterize Holliday Junction Resolvases. Methods in Enzymology, 2006, 408, 485-501.	0.4	25
74	CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature, 2005, 434, 598-604.	13.7	428
75	BRCA2 BRC motifs bind RAD51-DNA filaments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8537-8542.	3.3	130
76	Recombination at Mammalian Telomeres: An Alternative Mechanism for Telomere Protection and Elongation. Cell Cycle, 2005, 4, 672-674.	1.3	30
77	Human DNA Polymerase η Promotes DNA Synthesis from Strand Invasion Intermediates of Homologous Recombination. Molecular Cell, 2005, 20, 783-792.	4.5	287
78	RAD51 localization and activation following DNA damage. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 87-93.	1.8	91
79	Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Human Molecular Genetics, 2004, 13, 1241-1248.	1.4	190
80	RAD51C Is Required for Holliday Junction Processing in Mammalian Cells. Science, 2004, 303, 243-246.	6.0	289
81	Happy Hollidays: 40th anniversary of the Holliday junction. Nature Reviews Molecular Cell Biology, 2004, 5, 937-944.	16.1	152
82	Human RECQ5β, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO Journal, 2004, 23, 2882-2891.	3.5	184
83	Holliday Junction Branch Migration and Resolution Assays. , 2004, 262, 239-254.		8
84	Conformational Changes Modulate the Activity of Human RAD51 Protein. Journal of Molecular Biology, 2004, 337, 817-827.	2.0	53
85	Telomere Maintenance Requires the RAD51D Recombination/Repair Protein. Cell, 2004, 117, 337-347.	13.5	204
86	BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene, 2003, 22, 1115-1123.	2.6	173
87	Molecular views of recombination proteins and their control. Nature Reviews Molecular Cell Biology, 2003, 4, 435-445.	16.1	860
88	Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO Journal, 2003, 22, 6137-6147.	3.5	118
89	XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes. Molecular Cell, 2003, 11, 1109-1117.	4.5	148
90	Cross-links between Fanconi anaemia and BRCA2. DNA Repair, 2003, 2, 231-234.	1.3	3

#	Article	IF	CITATIONS
91	Identification and Characterization of the Human Mus81-Eme1 Endonuclease. Journal of Biological Chemistry, 2003, 278, 25172-25178.	1.6	189
92	Structure of the single-strand annealing domain of human RAD52 protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13492-13497.	3.3	211
93	Role of Mammalian RAD51L2 (RAD51C) in Recombination and Genetic Stability. Journal of Biological Chemistry, 2002, 277, 19322-19330.	1.6	88
94	Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO Journal, 2002, 21, 2827-2832.	3.5	234
95	Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO Journal, 2002, 21, 2038-2044.	3.5	90
96	Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO Journal, 2002, 21, 5577-5585.	3.5	151
97	Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Research, 2001, 4, 9-13.	2.2	69
98	The efficiency of strand invasion by Escherichia coli RecA is dependent upon the length and polarity of ssDNA tails. Journal of Molecular Biology, 2001, 305, 23-31.	2.0	17
99	Role of BRCA2 in Control of the RAD51 Recombination and DNA Repair Protein. Molecular Cell, 2001, 7, 273-282.	4.5	617
100	Branch Migration and Holliday Junction Resolution Catalyzed by Activities from Mammalian Cells. Cell, 2001, 104, 259-268.	13.5	140
101	Visualization of recombination intermediates produced by RAD52â€mediated singleâ€strand annealing. EMBO Reports, 2001, 2, 905-909.	2.0	69
102	The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends in Biochemical Sciences, 2001, 26, 131-136.	3.7	158
103	Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes and Development, 2001, 15, 3296-3307.	2.7	323
104	RuvAB-mediated branch migration does not involve extensive DNA opening within the RuvB hexamer. Current Biology, 2000, 10, 103-106.	1.8	19
105	The human Rad52 protein exists as a heptameric ring. Current Biology, 2000, 10, 337-340.	1.8	196
106	Werner's syndrome protein (WRN) migrates Holliday junctions and coâ€localizes with RPA upon replication arrest. EMBO Reports, 2000, 1, 80-84.	2.0	378
107	Precise binding of single-stranded DNA termini by human RAD52 protein. EMBO Journal, 2000, 19, 4175-4181.	3.5	77
108	Cleavage of Holliday Junctions by the Escherichia coli RuvABC Complex. Journal of Biological Chemistry, 2000, 275, 26467-26476.	1.6	43

#	Article	IF	CITATIONS
109	Functional interactions of Mycobacterium leprae RuvA with Escherichia coli RuvB and RuvC on holliday junctions 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 301, 839-850.	2.0	6
110	Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. Journal of Molecular Biology, 2000, 304, 151-164.	2.0	104
111	Binding of Inositol Phosphate to DNA-PK and Stimulation of Double-Strand Break Repair. Cell, 2000, 102, 721-729.	13.5	231
112	Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes and Development, 2000, 14, 1400-1406.	2.7	267
113	Binding of double-strand breaks in DNA by human Rad52 protein. Nature, 1999, 398, 728-731.	13.7	279
114	The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO Journal, 1999, 18, 6552-6560.	3.5	123
115	Heteroduplex Formation by Human Rad51 Protein: Effects of DNA End-structure, hRP-A and hRad52. Journal of Molecular Biology, 1999, 291, 363-374.	2.0	57
116	Helicase-defective RuvB D113E promotes RuvAB-mediated branch migration in Vitro 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 293, 505-519.	2.0	14
117	Binding of double-strand breaks in DNA by human Rad52 protein. Nature, 1999, 401, 403-403.	13.7	3
118	Title is missing!. Nature, 1999, 401, 403-403.	13.7	0
119	Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature, 1998, 391, 401-404.	13.7	371
120	Formation of RuvABC–Holliday junction complexes in vitro. Current Biology, 1998, 8, 725-727.	1.8	50
121	Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends in Biochemical Sciences, 1998, 23, 247-251.	3.7	492
122	RuvA Gets X-Rayed on Holliday. Cell, 1998, 94, 699-701.	13.5	16
123	Sequence-specificity of holliday junction resolution: identification of RuvC mutants defective in metal binding and target site recognition. Journal of Molecular Biology, 1998, 281, 17-29.	2.0	17
124	Coordinated actions of RuvABC in Holliday junction processing 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 281, 621-630.	2.0	69
125	Visualisation of human rad52 protein and its complexes with hrad51 and DNA. Journal of Molecular Biology, 1998, 284, 1027-1038.	2.0	109
126	PROCESSING OF RECOMBINATION INTERMEDIATES BY THE RuvABC PROTEINS. Annual Review of Genetics, 1997, 31, 213-244.	3.2	439

#	Article	IF	CITATIONS
127	Structure and subunit composition of theRuvAB-holliday junction complex 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1997, 266, 217-222.	2.0	85
128	Effect of DNA topology on holliday junction resolution by Escherichia coli RuvC and bacteriophage T7 endonuclease I. Journal of Molecular Biology, 1997, 270, 663-673.	2.0	24
129	Biochemical properties of RuvBD113N: a mutation in helicase motif II of the RuvB hexamer affects DNA binding and ATPase activities. Journal of Molecular Biology, 1997, 271, 704-717.	2.0	43
130	Purification of human Rad51 protein by selective spermidine precipitation. Mutation Research DNA Repair, 1997, 384, 65-72.	3.8	64
131	In Vitro Reconstitution of the Late Steps of Genetic Recombination in E. coli. Cell, 1997, 89, 607-617.	13.5	122
132	Bypass of DNA Heterologies During RuvAB-mediated Three- and Four-strand Branch Migration. Journal of Molecular Biology, 1996, 263, 582-596.	2.0	47
133	DNA Helicases: New Breeds of Translocating Motors and Molecular Pumps. Cell, 1996, 86, 177-180.	13.5	141
134	Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions In Vitro. Cell, 1996, 87, 757-766.	13.5	630
135	Exchanging partners: recombination in E. coli. Trends in Genetics, 1996, 12, 20-26.	2.9	74
136	The directionality of RuvABâ€mediated branch migration: in vitro studies with threeâ€armed junctions. Genes To Cells, 1996, 1, 443-451.	0.5	19
137	DNA helicases get physical. Nature, 1996, 384, 316-317.	13.7	3
138	Role of RuvA in Branch Migration Reactions Catalyzed by the RuvA and RuvB Proteins of Escherichia coli. Journal of Biological Chemistry, 1996, 271, 19497-19502.	1.6	19
139	Characterisation of RuvAB–Holliday junction complexes by glycerol gradient sedimentation. Nucleic Acids Research, 1995, 23, 3621-3626.	6.5	10
140	Holliday junctions cleaved by Rad1?. Nature, 1995, 373, 27-28.	13.7	24
141	Structure of a multisubunit complex that promotes DNA branch migration. Nature, 1995, 374, 375-378.	13.7	182
142	Role of the Rad1 and Rad10 Proteins in Nucleotide Excision Repair and Recombination. Journal of Biological Chemistry, 1995, 270, 24638-24641.	1.6	123
143	Relaxing and unwinding on Holliday: DNA helicase-mediated branch migration. Mutation Research DNA Repair, 1995, 337, 149-159.	3.8	10
144	Branch migration during homologous recombination: assembly of a RuvAB-holliday junction complex in vitro. Cell, 1995, 80, 787-793.	13.5	72

#	Article	IF	CITATIONS
145	Unwinding of Closed Circular DNA by theEscherichia coliRuvA and RuvB Recombination/Repair Proteins. Journal of Molecular Biology, 1995, 247, 404-417.	2.0	34
146	Structural Analysis of the RuvC-Holliday Junction Complex Reveals and Unfolded Junction. Journal of Molecular Biology, 1995, 252, 213-226.	2.0	118
147	Formation, translocation and resolution of Holliday junctions during homologous genetic recombination. , 1995, , 17-21.		0
148	Activation of RuvC Holliday junction resolvasein vitro. Nucleic Acids Research, 1994, 22, 2490-2497.	6.5	50
149	XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature, 1994, 371, 432-435.	13.7	450
150	The processing of recombination intermediates: Mechanistic insights from studies of bacterial proteins. Cell, 1994, 76, 9-15.	13.5	118
151	Processing of Holliday Junctions by RuvABC?An Overview. Annals of the New York Academy of Sciences, 1994, 726, 156-164.	1.8	5
152	Hexameric Rings of Escherichia coli RuvB Protein Journal of Molecular Biology, 1994, 243, 208-215.	2.0	76
153	An Assay for In Vitro Recombination Between Duplex DNA Molecules. , 1994, 30, 413-424.		2
154	Recombination genes and proteins. Current Opinion in Genetics and Development, 1994, 4, 221-228.	1.5	41
155	Formation of a RuvAB-Holliday Junction Complex in Vitro. Journal of Molecular Biology, 1993, 232, 397-405.	2.0	108
156	Resolution of holliday junctions by RuvC resolvase: Cleavage specificity and DNA distortion. Cell, 1993, 74, 1021-1031.	13.5	190
157	Enzymes and Molecular Mechanisms of Genetic Recombination. Annual Review of Biochemistry, 1992, 61, 603-640.	5.0	389
158	ATP-dependent branch migration of holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell, 1992, 69, 1171-1180.	13.5	262
159	Purification and properties of the RuvA and RuvB proteins of Escherichia coli. Molecular Genetics and Genomics, 1992, 235, 1-10.	2.4	105
160	Biological roles of the Escherichia coli RuvA, RuvB and RuvC proteins revealed. Molecular Microbiology, 1992, 6, 2755-2759.	1.2	43
161	Formation and resolution of recombination intermediates by E. coliRecA and RuvC proteins. Nature, 1991, 354, 506-510.	13.7	243
162	Three-stranded DNA helices as intermediates in genetic recombination. BioEssays, 1991, 13, 37-38.	1.2	4

#	Article	IF	CITATIONS
163	T7 endonuclease I resolves Holliday junctions formedin vitroby RecA protein. Nucleic Acids Research, 1990, 18, 5633-5636.	6.5	20
164	Processing of recombination intermediatesin vitro. BioEssays, 1990, 12, 151-154.	1.2	14
165	Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I. Nucleic Acids Research, 1990, 18, 4377-4384.	6.5	42
166	Enzymatic formation and resolution of Holliday junctions in vitro. Cell, 1990, 60, 329-336.	13.5	56
167	Cleavage specificity of bacteriophage T4 endonuclease VII and bacteriophage T7 endonuclease I on synthetic branch migratable holliday junctions. Journal of Molecular Biology, 1990, 212, 723-735.	2.0	58
168	Homologous pairing and the formation of nascent synaptic intermediates between regions of duplex DNA by RecA protein. Cell, 1989, 56, 987-995.	13.5	59
169	Proteins from Yeast and Human Cells Specific for Model Holliday Junctions in DNA. , 1989, , 233-243.		1
170	Protein-DNA interactions in genetic recombination. Trends in Genetics, 1988, 4, 8-13.	2.9	22
171	Resolution of model holliday junctions by yeast endonuclease is dependent upon homologous DNA sequences. Cell, 1988, 52, 621-629.	13.5	42
172	Specific binding of cruciform DNA structures by a protein from human extracts. Nucleic Acids Research, 1988, 16, 3603-3616.	6.5	44
173	Role of RecA protein spiral filaments in genetic recombination. Nature, 1984, 309, 215-220.	13.7	389
174	P. mirabilis RecA protein catalyses cleavage of E. coli LexA protein and the λ repressor in vitro. Molecular Genetics and Genomics, 1984, 194, 111-113.	2.4	15
175	Duplex-duplex interactions catalyzed by recA protein allow strand exchanges to pass double-strand breaks in DNA. Cell, 1984, 37, 683-691.	13.5	54
176	Enzymatic formation of biparental figure-eight molecules from plasmid DNA and their resolution in E. coli. Cell, 1983, 32, 817-829.	13.5	67
177	Role of SSB protein in RecA promoted branch migration reactions. Molecular Genetics and Genomics, 1982, 186, 333-338.	2.4	55
178	Postreplication repair in E. coli: Strand exchange reactions of gapped DNA by RecA protein. Molecular Genetics and Genomics, 1982, 187, 209-217.	2.4	98
179	Homologous pairing can occur before DNA strand separation in general genetic recombination. Nature, 1981, 290, 29-33.	13.7	49
180	Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA. Nature, 1981, 294, 659-662.	13.7	89

#	Article	IF	CITATIONS
181	Genetic recombination: recA protein promotes homologous pairing between duplex DNA molecules without strand unwinding. Nucleic Acids Research, 1981, 9, 4201-4210.	6.5	15
182	INDUCTION AND REPRESSION OF THE recA GENE OF ESCHERICHIA COLI. , 1978, , 367-370.		0
183	Induction of protein synthesis in Escherichia coli following UV-or Î ³ -irradiation, mitomycin C treatment or tif expression. Molecular Genetics and Genomics, 1977, 151, 57-67.	2.4	50
184	Identification of protein X of Escherichia coli as the recA + /tif + gene product. Molecular Genetics and Genomics, 1977, 155, 77-85.	2.4	153
185	recA +-dependent inactivation of the lambda repressor in Escherichia coli lysogens by Î ³ -radiation and by tif expression. Molecular Genetics and Genomics, 1975, 141, 1-8.	2.4	22