Shoji Takada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184397/publications.pdf

Version: 2024-02-01

140 6,315 37
papers citations h-index

162 162 162 4717 all docs docs citations times ranked citing authors

75

g-index

#	Article	IF	Citations
1	Cooperation among c-subunits of FoF1-ATP synthase in rotation-coupled proton translocation. ELife, 2022, 11, .	6.0	4
2	Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations. PLoS Computational Biology, 2022, 18, e1009578.	3.2	27
3	Coarse-grained molecular dynamics simulations of base-pair mismatch recognition protein MutS sliding along DNA. Biophysics and Physicobiology, 2022, 19, .	1.0	2
4	Inferring Conformational State of Myosin Motor in an Atomic Force Microscopy Image via Flexible Fitting Molecular Simulations. Frontiers in Molecular Biosciences, 2022, 9, 882989.	3.5	4
5	Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations. Journal of Computational and Applied Mathematics, 2022, 415, 114519.	2.0	1
6	Coarse-grained Biomolecular Simulations. Seibutsu Butsuri, 2021, 61, 144-151.	0.1	0
7	Linker DNA Length is a Key to Tri-nucleosome Folding. Journal of Molecular Biology, 2021, 433, 166792.	4.2	8
8	Case Report: Bayesian Statistical Inference of Experimental Parameters via Biomolecular Simulations: Atomic Force Microscopy. Frontiers in Molecular Biosciences, 2021, 8, 636940.	3.5	10
9	Role of bacterial RNA polymerase gate opening dynamics in DNA loading and antibiotics inhibition elucidated by quasi-Markov State Model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
10	Opening of cohesin's SMC ring is essential for timely DNA replication and DNA loop formation. Cell Reports, 2021, 35, 108999.	6.4	12
11	The kinetic landscape of nucleosome assembly: A coarse-grained molecular dynamics study. PLoS Computational Biology, 2021, 17, e1009253.	3.2	19
12	Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure. PLoS Computational Biology, 2021, 17, e1009215.	3.2	14
13	Modeling of DNA binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopy. PLoS Computational Biology, 2021, 17, e1009265.	3.2	4
14	The lane-switch mechanism for nucleosome repositioning by DNA translocase. Nucleic Acids Research, 2021, 49, 9066-9076.	14.5	5
15	Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules <i>in vitro</i> and <i>in vivo</i> Nucleic Acids Research, 2021, 49, 8642-8664.	14.5	11
16	Semi-Implicit Time Integration with Hessian Eigenvalue Corrections for a Larger Time Step in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2021, 17, 5792-5804.	5.3	2
17	Modeling lipid–protein interactions for coarse-grained lipid and Cα protein models. Journal of Chemical Physics, 2021, 155, 155101.	3.0	3
18	Modeling DNA Opening in the Eukaryotic Transcription Initiation Complexes via Coarse-Grained Models. Frontiers in Molecular Biosciences, 2021, 8, 772486.	3.5	4

#	Article	IF	Citations
19	Nucleosomes as allosteric scaffolds for genetic regulation. Current Opinion in Structural Biology, 2020, 62, 93-101.	5 . 7	14
20	The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA. Nucleic Acids Research, 2020, 48, 10820-10831.	14.5	14
21	How Cytoplasmic Dynein Couples ATP Hydrolysis Cycle to Diverse Stepping Motions: Kinetic Modeling. Biophysical Journal, 2020, 118, 1930-1945.	0.5	4
22	Nucleosome allostery in pioneer transcription factor binding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20586-20596.	7.1	57
23	Resolving the data asynchronicity in high-speed atomic force microscopy measurement via the Kalman Smoother. Scientific Reports, 2020, 10, 18393.	3.3	9
24	Particle Filter Method to Integrate High-Speed Atomic Force Microscopy Measurements with Biomolecular Simulations. Journal of Chemical Theory and Computation, 2020, 16, 6609-6619.	5.3	12
25	Molecular dynamics simulation of proton-transfer coupled rotations in ATP synthase FO motor. Scientific Reports, 2020, 10, 8225.	3.3	34
26	Flexible Fitting of Biomolecular Structures to Atomic Force Microscopy Images via Biased Molecular Simulations. Journal of Chemical Theory and Computation, 2020, 16, 1349-1358.	5.3	38
27	Coarse-grained implicit solvent lipid force field with a compatible resolution to the $\hat{\text{Cl}}_{\pm}$ protein representation. Journal of Chemical Physics, 2020, 153, 205101.	3.0	7
28	Overcoming the Bottleneck of the Enzymatic Cycle by Steric Frustration. Physical Review Letters, 2019, 122, 238102.	7.8	24
29	Nucleosome Crowding in Chromatin Slows the Diffusion but Can Promote Target Search of Proteins. Biophysical Journal, 2019, 116, 2285-2295.	0.5	17
30	Gŕmodel revisited. Biophysics and Physicobiology, 2019, 16, 248-255.	1.0	40
31	DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations. Nucleic Acids Research, 2018, 46, 2788-2801.	14.5	77
32	Reconstruction of Atomistic Structures from Coarse-Grained Models for Protein–DNA Complexes. Journal of Chemical Theory and Computation, 2018, 14, 1682-1694.	5.3	27
33	Interactions of HP1 Bound to H3K9me3 Dinucleosome by Molecular Simulations andÂBiochemical Assays. Biophysical Journal, 2018, 114, 2336-2351.	0.5	28
34	Chromatin remodelers couple inchworm motion with twist-defect formation to slide nucleosomal DNA. PLoS Computational Biology, 2018, 14, e1006512.	3.2	39
35	Dynamic and Structural Modeling of the Specificity in Protein–DNA Interactions Guided by Binding Assay and Structure Data. Journal of Chemical Theory and Computation, 2018, 14, 3877-3889.	5.3	27
36	How one-dimensional diffusion of transcription factors are affected by obstacles: coarse-grained molecular dynamics study. Molecular Simulation, 2017, 43, 1315-1321.	2.0	7

#	Article	IF	CITATIONS
37	Allosteric conformational change cascade in cytoplasmic dynein revealed by structure-based molecular simulations. PLoS Computational Biology, 2017, 13, e1005748.	3.2	29
38	Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Computational Biology, 2017, 13, e1005880.	3.2	50
39	The structural basis of a high affinity ATP binding $\hat{l}\mu$ subunit from a bacterial ATP synthase. PLoS ONE, 2017, 12, e0177907.	2.5	13
40	Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8021-E8030.	7.1	56
41	Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations. Scientific Reports, 2016, 6, 34441.	3.3	31
42	Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics. Journal of the American Chemical Society, 2016, 138, 8512-8522.	13.7	63
43	On the ATP binding site of the $\hat{l}\mu$ subunit from bacterial F-type ATP synthases. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 332-340.	1.0	14
44	p53 dynamics upon response element recognition explored by molecular simulations. Scientific Reports, 2015, 5, 17107.	3.3	30
45	How Co-translational Folding of Multi-domain Protein Is Affected by Elongation Schedule: Molecular Simulations. PLoS Computational Biology, 2015, 11, e1004356.	3.2	22
46	Partial Unwrapping and Histone Tail Dynamics in Nucleosome Revealed by Coarse-Grained Molecular Simulations. PLoS Computational Biology, 2015, 11, e1004443.	3.2	73
47	On the Mg2+ binding site of the $\hat{l}\mu$ subunit from bacterial F-type ATP synthases. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1101-1112.	1.0	9
48	Dimer domain swapping versus monomer folding in apo-myoglobin studied by molecular simulations. Physical Chemistry Chemical Physics, 2015, 17, 5006-5013.	2.8	16
49	Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase. Journal of Chemical Physics, 2015, 142, 212404.	3.0	17
50	Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations. Accounts of Chemical Research, 2015, 48, 3026-3035.	15.6	134
51	Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10550-10555.	7.1	150
52	Multi-scale Ensemble Modeling of Modular Proteins with Intrinsically Disordered Linker Regions: Application to p53. Biophysical Journal, 2014, 107, 721-729.	0.5	28
53	RESPAC: Method to Determine Partial Charges in Coarse-Grained Protein Model and Its Application to DNA-Binding Proteins. Journal of Chemical Theory and Computation, 2014, 10, 711-721.	5.3	39

¹P148 Molecular mechanism of the epsilon subunit from F-type ATP synthases studied by Molecular Dynamics simulations (11. Molecular motor, Poster, The 52nd Annual Meeting of the Biophysical Society) Tj ETQq0 001rgBT / Overlock 10

#	Article	IF	Citations
55	3P276 Comprehensive analysis of protein folding energy landscape by multicanonical Go-model molecular dynamics simulation(24. Mathematical biology, Poster, The 52nd Annual Meeting of the) Tj ETQq $1\ 1\ 0.000$	78 ⊕3 114 rg	gBTo/Overlock
56	Proteinâ€specific force field derived from the fragment molecular orbital method can improve protein–ligand binding interactions. Journal of Computational Chemistry, 2013, 34, 1251-1257.	3.3	15
57	Folding Coupled with Assembly in Split Green Fluorescent Proteins Studied by Structure-based Molecular Simulations. Journal of Physical Chemistry B, 2013, 117, 13212-13218.	2.6	9
58	Adenosine Triphosphate Hydrolysis Mechanism in Kinesin Studied by Combined Quantum-Mechanical/Molecular-Mechanical Metadynamics Simulations. Journal of the American Chemical Society, 2013, 135, 8908-8919.	13.7	56
59	Drug Uptake Pathways of Multidrug Transporter AcrB Studied by Molecular Simulations and Site-Directed Mutagenesis Experiments. Journal of the American Chemical Society, 2013, 135, 7474-7485.	13.7	53
60	Structure-based Molecular Simulations Reveal the Enhancement of Biased Brownian Motions in Single-headed Kinesin. PLoS Computational Biology, 2013, 9, e1002907.	3.2	15
61	1P149 The Mg^<2+> binding site of the ATP synthase ε subunit from Bacillus subtilis derived by Molecular Dynamics simulations(11.Molecular motor,Poster,The 51st Annual Meeting of the) Tj ETQq1 1 0.7843	14orgBT/0	Overlock 10T
62	3P121 Poly-nucleosome structural dynamics by coarse-grained simulations(05A. Nucleic acid:) Tj ETQq0 0 0 rgB1	Overlock	R 18 Tf 50 46
63	2SCP-03 Structure of model chromatin and dynamics of transcription factors studied by coarse-grained simulations (2SCP Functional dynamics of Nucleosome and Chromathin in Nuclear) Tj ETQq1 1 0. Seibutsu Butsuri, 2013, 53, 598.	784314 rg 0.1	gBT _O /Overlock
64	Molecular Dynamics Simulations of Biomolecules. Journal of the Society of Mechanical Engineers, 2013, 116, 78-80.	0.0	0
65	Bayesian Parameter Inference by Markov Chain Monte Carlo with Hybrid Fitness Measures: Theory and Test in Apoptosis Signal Transduction Network. PLoS ONE, 2013, 8, e74178.	2.5	5
66	Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53. Biophysics (Nagoya-shi, Japan), 2012, 8, 41-50.	0.4	4
67	3PT009 Mono- and poly-nucleosome structural dynamics by coarse-grained simulations(The 50th) Tj ETQq $1\ 1\ 0.000$	784314 rg 0.1	BT/Overlock
68	3PTO11 Diffusion of TFIIIA zinc fingers along DNA studied by molecular simulations(The 50th Annual) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
69	Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17789-17794.	7.1	134
70	p53 Searches on DNA by Rotation-Uncoupled Sliding at C-Terminal Tails and Restricted Hopping of Core Domains. Journal of the American Chemical Society, 2012, 134, 14555-14562.	13.7	89
71	Coarse-Grained Structure-Based Model for RNA-Protein Complexes Developed by Fluctuation Matching. Journal of Chemical Theory and Computation, 2012, 8, 3384-3394.	5.3	39
72	Coarse-grained molecular simulations of large biomolecules. Current Opinion in Structural Biology, 2012, 22, 130-137.	5.7	205

#	Article	IF	Citations
73	Multiscale Ensemble Modeling of Intrinsically Disordered Proteins: p53 N-Terminal Domain. Biophysical Journal, 2011, 101, 1450-1458.	0.5	92
74	Frustration, specific sequence dependence, and nonlinearity in large-amplitude fluctuations of allosteric proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3504-3509.	7.1	143
75	CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. Journal of Chemical Theory and Computation, 2011, 7, 1979-1989.	5.3	202
76	3A1112 Molecular dynamics simulation of pH-activated KcsA channel(3A Biol & Diol & Artifi memb 3:) Tj ETQq0 0 0 Butsuri, 2011, 51, S105.	rgBT /Over 0.1	rlock 10 Tf O
77	1C1436 Coarse-grained simulations of multi-nucleosome systems(Nucleic acid,The 49th Annual Meeting) Tj ETQq	1 1 0.7843 0.1	3 ₀ 4 rgBT /C
78	1Q1324 Activation mechanism of rhodopsin elucidated by molecular dynamics simulations(Photobiology: Vision & ETQq0 (O@rgBT/C)øerlock 10
79	Structural Comparison of F1-ATPase: Interplay among Enzyme Structures, Catalysis, and Rotations. Structure, 2011, 19, 588-598.	3.3	36
80	On easy implementation of a variant of the replica exchange with solute tempering in GROMACS. Journal of Computational Chemistry, 2011, 32, 1228-1234.	3.3	131
81	1P136 Coarse-grained simulation of protein-DNA complex : mechanical unzipping of nucleosome(Nucleic acid:Interaction & Complex formation,The 48th Annual Meeting of the Biophysical) Tj ETQq1	100178431	⊕rgBT /C∨
82	2P119 Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S103.	0.1	0
83	3P309 Modeling Rhodopsin active conformation (Meta II) by molecular dynamics simulations(Mathematical biology,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S200.	0.1	O
84	Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nature Communications, 2010, 1, 117.	12.8	82
85	Characterizing Protein Energy Landscape by Self-Learning Multiscale Simulations: Application to a Designed Î ² -Hairpin. Biophysical Journal, 2010, 99, 3029-3037.	0.5	17
86	35 Years of the Go Model. Seibutsu Butsuri, 2010, 50, 158-159.	0.1	1
87	Folding energy landscape and network dynamics of small globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 73-78.	7.1	68
88	Self-learning multiscale simulation for achieving high accuracy and high efficiency simultaneously. Journal of Chemical Physics, 2009, 130, 214108.	3.0	19
89	Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of <i>Escherichia coli</i> proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4201-4206.	7.1	253
90	Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18237-18242.	7.1	29

#	Article	IF	CITATIONS
91	3P-182 Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation(Biol & Artifi memb.:Dynamics,Oral Presentations,The 47th Annual Meeting of the) Tj ETQq1 1 0.7843	140rgBT/(Dveolock 10 Tf
92	1TP5-07 Coarse-grained simulation of protein-DNA complex : dynamics of nucleosome(The 47th Annual) Tj ETQq	0 0,0 rgB ⁻	T /Qverlock 10
93	1P-099 Coarse-grained simulation of protein-DNA complex: dynamics of nucleosome(Nucleic) Tj ETQq1 1 0.7843 Seibutsu Butsuri, 2009, 49, S79.	0.1	/Overlock 10 T 0
94	2P-002 Folding simulations of chignolin by self-learning multiscale method(Protein:Structure, The) Tj ETQq0 0 0 r	gBT/Ove	rlock 10 Tf 50
95	1TA4-02 Mechanism of unidirectional move of KIF1A motor studied by coarse-grained simulations(The) Tj ETQq1	1 8.7843	14 ₀ gBT /Over
96	2TP5-02 Folding simulations of chignolin by self-learning multiscale method(The 47th Annual Meeting) Tj ETQq0	0 0 rgBT /	Overlock 10 T
97	3TA3-02 Functionally rotating mechanism of a multidrug transporter studied by coarse-grained simulation(The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S54-S55.	0.1	O
98	1P-129 Mechanism of unidirectional move of KIF1A motor studied by coarse-grained simulations(Molecular motor, The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S83.	0.1	O
99	3P-183 Membrane morphology dynamics induced by proteins: Coarsegrained molecular simulations(Biol & Coarsegrained Meeting of the Biophysical Society of) Tj ETQq1	1 0o7184 31	14 ngBT /Overl
100	1P-098 Replica exchange simulations applied for coarse-grained models of giant protein-nucleic acid complex (Nucleic acid:Interaction & Complex formation, The 47th Annual Meeting of the) Tj ETQq $0\ 0\ 0$ rgBT	/Owarlock	₹ 1 @ Tf 50 377
101	Molecular Mechanism of Allostery: MWC or KNF Model?-Approach by Theoretical Model Calculation. Seibutsu Butsuri, 2009, 49, 132-134.	0.1	1
102	Asymmetry in Membrane Protein Sequence and Structure: Glycine Outside Rule. Journal of Molecular Biology, 2008, 377, 74-82.	4.2	4
103	In Silico Chaperonin-Like Cycle Helps Folding of Proteins for Structure Prediction. Biophysical Journal, 2008, 94, 2558-2565.	0.5	3
104	Dynamic energy landscape view of coupled binding and protein conformational change: Induced-fit versus population-shift mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11182-11187.	7.1	297
105	1P-145 Simulation study on stepping mechanism of Conventional Kinesin by coarse-grained model(The) Tj ETQq1	. 1.0.784: 0 . 1	314 rgBT /Ove
106	1P-065 Simulating large-scale conformational change in a virus protein that mediates membrane fusion(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S31.	0.1	0
107	2S4-4 Structure change coupled with binding and its application to biomolecular systems(2S4 What) Tj ETQq1 1 Seibutsu Butsuri, 2008, 48, S10.	0.78431 0.1	4 rgBT /Overlo 0
108	S09A4 Rotary mechanisms of F1-ATPase revealed by molecular simulations (Mechanism of F_1-ATPase) Tj ETQq0	0 0 rgBT / 0.1	/Overlock 10 T O

#	Article	IF	Citations
109	Protein Grabs a Ligand by Extending Anchor Residues: Molecular Simulation for Ca2+ Binding to Calmodulin Loop. Biophysical Journal, 2006, 90, 3043-3051.	0.5	34
110	Secondary structure provides a template for the folding of nearby polypeptides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17765-17770.	7.1	31
111	Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11844-11849.	7.1	286
112	Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5367-5372.	7.1	116
113	SimFold energy function for de novo protein structure prediction: Consensus with Rosetta. Proteins: Structure, Function and Bioinformatics, 2005, 62, 381-398.	2.6	46
114	Applying a grid technology to protein structure predictor "ROKKY". Studies in Health Technology and Informatics, 2005, 112, 27-36.	0.3	1
115	Roles of physical interactions in determining protein-folding mechanisms: Molecular simulation of protein G and α spectrin SH3. Proteins: Structure, Function and Bioinformatics, 2004, 55, 128-138.	2.6	16
116	Guiding the search for a protein's maximum rate of folding. Chemical Physics, 2004, 307, 99-109.	1.9	52
117	Protein folding mechanisms and energy landscape of src SH3 domain studied by a structure prediction toolbox. Chemical Physics, 2004, 307, 157-162.	1.9	18
118	De Novo Design of Foldable Proteins with Smooth Folding Funnel. Structure, 2003, 11, 581-590.	3.3	77
119	Optimizing physical energy functions for protein folding. Proteins: Structure, Function and Bioinformatics, 2003, 54, 88-103.	2.6	84
120	Competition between Protein Folding and Aggregation with Molecular Chaperones in Crowded Solutions: Insight from Mesoscopic Simulations. Biophysical Journal, 2003, 85, 3521-3531.	0.5	38
121	How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11367-11372.	7.1	204
122	A reversible fragment assembly method for de novo protein structure prediction. Journal of Chemical Physics, 2003, 119, 6895-6903.	3.0	46
123	On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. Journal of Chemical Physics, 2002, 116, 9058-9067.	3.0	681
124	Roles of native topology and chain-length scaling in protein folding: A simulation study with a Gŕlike model 1 1Edited by B. Honig. Journal of Molecular Biology, 2001, 313, 171-180.	4.2	344
125	Protein folding simulation with solvent-induced force field: Folding pathway ensemble of three-helix-bundle proteins. Proteins: Structure, Function and Bioinformatics, 2001, 42, 85-98.	2.6	47
126	Microscopic theory of protein folding rates. II. Local reaction coordinates and chain dynamics. Journal of Chemical Physics, 2001, 114, 5082-5096.	3.0	164

#	Article	IF	CITATIONS
127	Microscopic theory of protein folding rates. I. Fine structure of the free energy profile and folding routes from a variational approach. Journal of Chemical Physics, 2001, 114, 5069-5081.	3.0	99
128	Simulating Folding of Helical Proteins with Coarse Grained Models. Progress of Theoretical Physics Supplement, 2000, 138, 366-371.	0.1	2
129	Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer. Journal of Chemical Physics, 1999, 110, 11616-11629.	3.0	188
130	Microscopic theory of critical folding nuclei and reconfiguration activation barriers in folding proteins. Journal of Chemical Physics, 1997, 107, 9585-9598.	3.0	26
131	Statics, metastable states, and barriers in protein folding: A replica variational approach. Physical Review E, 1997, 55, 4562-4577.	2.1	30
132	Glassy Dynamics of Random Heteropolymers. Progress of Theoretical Physics Supplement, 1997, 126, 49-52.	0.1	2
133	Multidimensional tunneling in terms of complex classical mechanics: Wave functions, energy splittings, and decay rates in nonintegrable systems. Journal of Chemical Physics, 1996, 104, 3742-3759.	3.0	25
134	Effects of vibrational excitation on multidimensional tunneling: General study and proton tunneling in tropolone. Journal of Chemical Physics, 1995, 102, 3977-3992.	3.0	103
135	Transfer-matrix approach to tunneling between Kolmogorov-Arnold-Moser tori. Physical Review A, 1995, 52, 3546-3553.	2.5	13
136	Wentzel–Kramers–Brillouin theory of multidimensional tunneling: General theory for energy splitting. Journal of Chemical Physics, 1994, 100, 98-113.	3.0	83
137	Constant centrifugal potential approximation for atom–diatom chemical reaction dynamics. Journal of Chemical Physics, 1994, 100, 4284-4293.	3.0	7
138	WKB Theory of Tunneling between Tori. Progress of Theoretical Physics Supplement, 1994, 116, 295-301.	0.1	3
139	Reaction dynamics of D+H2â†'DH+H: Effects of potential energy surface topography and usefulness of the constant centrifugal potential approximation. Journal of Chemical Physics, 1992, 96, 339-348.	3.0	18
140	Rotational Mechanism of FO Motor in the F-Type ATP Synthase Driven by the Proton Motive Force. Frontiers in Microbiology, 0, 13 , .	3. 5	6