Qing Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184353/publications.pdf Version: 2024-02-01

OINC HONC

#	Article	IF	CITATIONS
1	Characterization of a new heterotrophic nitrification bacterium Pseudomonas sp. strain JQ170 and functional identification of nap gene in nitrite production. Science of the Total Environment, 2022, 806, 150556.	8.0	7
2	Genetic Foundations of Direct Ammonia Oxidation (Dirammox) to N ₂ and MocR-Like Transcriptional Regulator DnfR in Alcaligenes faecalis Strain JQ135. Applied and Environmental Microbiology, 2022, 88, aem0226121.	3.1	9
3	Degradation of dimethachlon by a newly isolated bacterium Paenarthrobacter sp. strain JH-1 relieves its toxicity against Chlorella ellipsoidea. Environmental Research, 2022, 208, 112706.	7.5	3
4	The TetR Family Repressor HpaR Negatively Regulates the Catabolism of 5-Hydroxypicolinic Acid in Alcaligenes faecalis JQ135 by Binding to Two Unique DNA Sequences in the Promoter of <i>Hpa</i> Operon. Applied and Environmental Microbiology, 2022, 88, aem0239021.	3.1	3
5	Two LysR Family Transcriptional Regulators, McbH and McbN, Activate the Operons Responsible for the Midstream and Downstream Pathways, Respectively, of Carbaryl Degradation in Pseudomonas sp. Strain XWY-1. Applied and Environmental Microbiology, 2022, 88, AEM0206021.	3.1	5
6	Biodegradation of Quinoline by a Newly Isolated Salt-Tolerating Bacterium Rhodococcus gordoniae Strain JH145. Microorganisms, 2022, 10, 797.	3.6	6
7	Biodegradation of Quinolinic acid by a Newly Isolated Bacterium <i>Alcaligenes faecalis</i> Strain JQ191. FEMS Microbiology Letters, 2022, , .	1.8	1
8	The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Applied and Environmental Microbiology, 2022, 88, e0054322.	3.1	3
9	PicR as a MarR Family Transcriptional Repressor Multiply Controls the Transcription of Picolinic Acid Degradation Gene Cluster <i>pic</i> in Alcaligenes faecalis JQ135. Applied and Environmental Microbiology, 2022, 88, .	3.1	6
10	The Novel Monooxygenase Gene <i>dipD</i> in the <i>dip</i> Gene Cluster of <i>Alcaligenes faecalis</i> JQ135 Is Essential for the Initial Catabolism of Dipicolinic Acid. Applied and Environmental Microbiology, 2022, 88, .	3.1	2
11	Substrate preference of carbamate hydrolase CehA reveals its environmental behavior. Journal of Hazardous Materials, 2021, 403, 123677.	12.4	12
12	Comparative genomic analysis of iprodioneâ€degrading <i>Paenarthrobacter</i> strains reveals the iprodione catabolic molecular mechanism in <i>Paenarthrobacter</i> sp. strain <scp>YJN</scp> â€5. Environmental Microbiology, 2021, 23, 1079-1095.	3.8	8
13	McbC, a LysR Family Transcriptional Regulator, Activates the <i>mcbBCDEF</i> Gene Cluster Involved in the Upstream Pathway of Carbaryl Degradation in <i>Pseudomonas</i> sp. Strain XWY-1. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
14	A novel hydrolase <scp>PyzH</scp> catalyses the cleavage of C=N double bond for pymetrozine degradation in <i>Pseudomonas</i> sp. <scp>BYT</scp> â€1. Environmental Microbiology, 2021, 23, 3265-3273.	3.8	6
15	Detoxification Esterase StrH Initiates Strobilurin Fungicide Degradation in <i>Hyphomicrobium</i> sp. Strain DY-1. Applied and Environmental Microbiology, 2021, 87, .	3.1	15
16	Unveiling the CoA mediated salicylate catabolic mechanism in <i>Rhizobium</i> sp. X9. Molecular Microbiology, 2021, 116, 783-793.	2.5	4
17	Potential effects of Rhodococcus qingshengii strain djl-6 on the bioremediation of carbendazim-contaminated soil and the assembly of its microbiome. Journal of Hazardous Materials, 2021, 414, 125496.	12.4	30
18	Cotinine Hydroxylase CotA Initiates Biodegradation of Wastewater Micropollutant Cotinine in <i>Nocardioides</i> sp. Strain JQ2195. Applied and Environmental Microbiology, 2021, 87, e0092321.	3.1	9

#	Article	IF	CITATIONS
19	The enhanced mechanisms of Hansschlegelia zhihuaiae S113 degrading bensulfuron-methyl in maize rhizosphere by three organic acids in root exudates. Ecotoxicology and Environmental Safety, 2021, 223, 112622.	6.0	11
20	Catabolic characterization of dipicolinic acid in Alcaligenes faecalis strain JQ135. International Biodeterioration and Biodegradation, 2021, 165, 105312.	3.9	5
21	Heterologous expression and exploration of the enzymatic properties of the carbaryl hydrolase CarH from a newly isolated carbaryl-degrading strain. Ecotoxicology and Environmental Safety, 2021, 224, 112666.	6.0	7
22	Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1. Ecotoxicology and Environmental Safety, 2020, 189, 109938.	6.0	26
23	An angular dioxygenase gene cluster responsible for the initial phenazine-1-carboxylic acid degradation step in Rhodococcus sp. WH99 can protect sensitive organisms from toxicity. Science of the Total Environment, 2020, 706, 135726.	8.0	7
24	Hydrolase CehA and a Novel Two-Component 1-Naphthol Hydroxylase CehC1C2 are Responsible for the Two Initial Steps of Carbaryl Degradation inRhizobiumsp. X9. Journal of Agricultural and Food Chemistry, 2020, 68, 14739-14747.	5.2	11
25	Effect of pesticide residues on simulated beer brewing and its inhibition elimination by pesticide-degrading enzyme. Journal of Bioscience and Bioengineering, 2020, 130, 496-502.	2.2	7
26	Carbamate C-N Hydrolase Gene <i>ameH</i> Responsible for the Detoxification Step of Methomyl Degradation in Aminobacter aminovorans Strain MDW-2. Applied and Environmental Microbiology, 2020, 87, .	3.1	11
27	Bacterial catabolism of nicotine: Catabolic strains, pathways and modules. Environmental Research, 2020, 183, 109258.	7.5	24
28	Degradation of dibutyl phthalate (DBP) by a bacterial consortium and characterization of two novel esterases capable of hydrolyzing PAEs sequentially. Ecotoxicology and Environmental Safety, 2020, 195, 110517.	6.0	32
29	pheSAG Based Rapid and Efficient Markerless Mutagenesis in Methylotuvimicrobium. Frontiers in Microbiology, 2020, 11, 441.	3.5	9
30	Ornithinicoccus soli sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1793-1799.	1.7	9
31	Cumulibacter soli sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1152-1157.	1.7	5
32	Novel 3,6-Dihydroxypicolinic Acid Decarboxylase-Mediated Picolinic Acid Catabolism in <i>Alcaligenes faecalis</i> JQ135. Journal of Bacteriology, 2019, 201, .	2.2	8
33	Genome Analysis of Carbaryl-Degrading Strain Pseudomonas putida XWY-1. Current Microbiology, 2019, 76, 927-929.	2.2	24
34	Identification and Characterization of a Novel <i>pic</i> Gene Cluster Responsible for Picolinic Acid Degradation in Alcaligenes faecalis JQ135. Journal of Bacteriology, 2019, 201, .	2.2	18
35	Isolation and Characterization of the Pymetrozine-Degrading Strain <i>Pseudomonas</i> sp. BYT-1. Journal of Agricultural and Food Chemistry, 2019, 67, 4170-4176.	5.2	14
36	Colonization on Cucumber Root and Enhancement of Chlorimuron-ethyl Degradation in the Rhizosphere by <i>Hansschlegelia zhihuaiae</i> S113 and Root Exudates. Journal of Agricultural and Food Chemistry, 2018, 66, 4584-4591.	5.2	18

#	Article	IF	CITATIONS
37	Isolation and characterization of the cotinine-degrading bacterium Nocardioides sp. Strain JQ2195. Journal of Hazardous Materials, 2018, 353, 158-165.	12.4	22
38	Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. Journal of Hazardous Materials, 2018, 344, 1126-1135.	12.4	36
39	A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135. Applied and Environmental Microbiology, 2018, 84, .	3.1	30
40	Optimization of fed-batch fermentation and direct spray drying in the preparation of microbial inoculant of acetochlor-degrading strain Sphingomonas sp. DC-6. 3 Biotech, 2018, 8, 294.	2.2	6
41	An Amidase Gene, <i>ipaH</i> , Is Responsible for the Initial Step in the Iprodione Degradation Pathway of Paenarthrobacter sp. Strain YJN-5. Applied and Environmental Microbiology, 2018, 84, .	3.1	34
42	Hydrolase CehA and Monooxygenase CfdC Are Responsible for Carbofuran Degradation in Sphingomonas sp. Strain CDS-1. Applied and Environmental Microbiology, 2018, 84, .	3.1	32
43	Terrimonas soli sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 819-823.	1.7	19
44	Pedobacter agrisoli sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 886-891.	1.7	7
45	The Two-Component Monooxygenase MeaXY Initiates the Downstream Pathway of Chloroacetanilide Herbicide Catabolism in Sphingomonads. Applied and Environmental Microbiology, 2017, 83, .	3.1	23
46	Identification of the key amino acid sites of the carbendazim hydrolase (MheI) from a novel carbendazim-degrading strain Mycobacterium sp. SD-4. Journal of Hazardous Materials, 2017, 331, 55-62.	12.4	30
47	Biodegradation of Picolinic Acid by a Newly Isolated Bacterium Alcaligenes faecalis Strain JQ135. Current Microbiology, 2017, 74, 508-514.	2.2	28
48	Molecular Mechanism and Genetic Determinants of Buprofezin Degradation. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
49	Production of chlorothalonil hydrolytic dehalogenase from agroâ€industrial wastewater and its application in raw food cleaning. Journal of the Science of Food and Agriculture, 2017, 97, 2582-2587.	3.5	6
50	Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium. Environmental Pollution, 2017, 220, 1059-1067.	7.5	36
51	Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pesticide Biochemistry and Physiology, 2017, 143, 272-297.	3.6	109
52	Nocardioides agrisoli sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3722-3727.	1.7	20
53	Comparative genomic analysis of isoproturonâ€mineralizing sphingomonads reveals the isoproturon catabolic mechanism. Environmental Microbiology, 2016, 18, 4888-4906.	3.8	39
54	Cloning, expression and mutation of a triazophos hydrolase gene from <i>Burkholderia</i> sp. SZL-1. FEMS Microbiology Letters, 2016, 363, fnw108.	1.8	7

#	Article	IF	CITATIONS
55	Pendimethalin Nitroreductase Is Responsible for the Initial Pendimethalin Degradation Step in Bacillus subtilis Y3. Applied and Environmental Microbiology, 2016, 82, 7052-7062.	3.1	26
56	A Tetrahydrofolate-Dependent Methyltransferase Catalyzing the Demethylation of Dicamba in Sphingomonas sp. Strain Ndbn-20. Applied and Environmental Microbiology, 2016, 82, 5621-5630.	3.1	16
57	Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. Environmental Science and Pollution Research, 2016, 23, 6861-6872.	5.3	26
58	Degradation of monocrotophos by Starkeya novella YW6 isolated from paddy soil. Environmental Science and Pollution Research, 2016, 23, 3727-3735.	5.3	12
59	Flavobacterium lutivivi sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1394-1400.	1.7	10
60	Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4968-4974.	1.7	13
61	Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh). Brazilian Journal of Microbiology, 2015, 46, 425-432.	2.0	23
62	Mangrovibacter yixingensis sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2447-2452.	1.7	11
63	Chryseobacterium shandongense sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1860-1865.	1.7	19
64	Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3517-3521.	1.7	15
65	Luteimonas soli sp. nov., isolated from farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4809-4815.	1.7	21
66	Identification and Evaluation of Strain B37 ofBacillus subtilisAntagonistic to Sapstain Fungi on Poplar Wood. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	7
67	Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2047-2052.	1.7	28
68	A Novel Angular Dioxygenase Gene Cluster Encoding 3-Phenoxybenzoate 1′,2′-Dioxygenase in Sphingobium wenxiniae JZ-1. Applied and Environmental Microbiology, 2014, 80, 3811-3818.	3.1	30
69	Flavobacterium yanchengense sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2848-2852.	1.7	10
70	Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4515-4518.	1.7	13
71	SulE, a Sulfonylurea Herbicide De-Esterification Esterase from Hansschlegelia zhihuaiae S113. Applied and Environmental Microbiology, 2012, 78, 1962-1968.	3.1	46
72	Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1871-1876.	1.7	54

#	Article	IF	CITATIONS
73	Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1337-1341.	1.7	30
74	Hansschlegelia zhihuaiae sp. nov., isolated from a polluted farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1114-1117.	1.7	15
75	Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 378-381.	1.7	37
76	Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2724-2728.	1.7	35
77	Isolation and characterization of a carbofuran-degrading strainNovosphingobiumsp. FND-3. FEMS Microbiology Letters, 2007, 271, 207-213.	1.8	84