Kathryn J Coyne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1843103/publications.pdf

Version: 2024-02-01

64 3,860 29 60
papers citations h-index g-index

67 67 67 4357 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	5.6	885
2	Niche of harmful alga <i>Aureococcus anophagefferens</i> revealed through ecogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4352-4357.	7.1	256
3	Extensible Collagen in Mussel Byssus: A Natural Block Copolymer. Science, 1997, 277, 1830-1832.	12.6	242
4	The peculiar collagens of mussel byssus. Matrix Biology, 1998, 17, 93-106.	3.6	220
5	Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae, 2007, 6, 119-133.	4.8	164
6	Improved quantitative realâ€time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnology and Oceanography: Methods, 2005, 3, 381-391.	2.0	130
7	Tough Tendons. Journal of Biological Chemistry, 1997, 272, 32623-32627.	3.4	119
8	Assessing temporal and spatial variability in Pfiesteria piscicida distributions using molecular probing techniques. Aquatic Microbial Ecology, 2001, 24, 275-285.	1.8	106
9	Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biology, 2017, 40, 997-1006.	1.2	99
10	Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 2020, 17, 481-494.	19.0	97
11	Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae, 2006, 5, 310-320.	4.8	94
12	Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.). PLoS ONE, 2014, 9, e114329.	2.5	87
13	A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae, 2005, 4, 221-234.	4.8	79
14	Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies. Harmful Algae, 2008, 7, 599-613.	4.8	63
15	Evaluating vertical migration behavior of harmful raphidophytes in the Delaware Inland Bays utilizing quantitative real-time PCR. Aquatic Microbial Ecology, 2005, 40, 121-132.	1.8	60
16	Investigation of the algicidal exudate produced by Shewanella sp. IRI-160 and its effect on dinoflagellates. Harmful Algae, 2012, 19, 23-29.	4.8	60
17	Community-Level and Species-Specific Associations between Phytoplankton and Particle-Associated Vibrio Species in Delaware's Inland Bays. Applied and Environmental Microbiology, 2015, 81, 5703-5713.	3.1	56
18	Demonstration of toxicity to fish and to mammalian cells by Pfiesteria species: Comparison of assay methods and strains. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3471-3476.	7.1	55

#	Article	IF	CITATIONS
19	Lipid biomarkers of deep-sea hydrothermal vent polychaetes—Alvinella pompejana, A. caudata, Paralvinella grasslei and Hesiolyra bergii. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 2333-2352.	1.4	52
20	Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 141, 196-210.	1.6	50
21	Transport of the Harmful Bloom Alga Aureococcus anophagefferens by Oceangoing Ships and Coastal Boats. Applied and Environmental Microbiology, 2004, 70, 6495-6500.	3.1	49
22	Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Scientific Reports, 2017, 7, 45102.	3.3	45
23	The use of quantitative polymerase chain reaction for the detection and enumeration of the harmful alga <i>Aureococcus anophagefferens</i> in environmental samples along the United States East Coast. Limnology and Oceanography: Methods, 2003, 1, 92-102.	2.0	43
24	Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Frontiers in Microbiology, 2022, 13, 871177.	3.5	42
25	Simultaneous enumeration of multiple raphidophyte species by quantitative real-time PCR: capabilities and limitations. Limnology and Oceanography: Methods, 2006, 4, 193-204.	2.0	41
26	The use of quantitative polymerase chain reaction for the detection and enumeration of the harmful alga Aureococcus anophagefferens in environmental samples along the United States East Coast. Limnology and Oceanography: Methods, 2011, 1, 92-102.	2.0	40
27	Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes—implications for HAB invasions. Harmful Algae, 2007, 6, 519-530.	4.8	39
28	INTERSTRAIN VARIABILITY IN PHYSIOLOGY AND GENETICS OF <i>heterosigma akashiwo </i> (RAPHIDOPHYCEAE) FROM THE WEST COAST OF NORTH AMERICA < sup > 1 . Journal of Phycology, 2011, 47, 25-35.	2.3	35
29	Assessment of Microzooplankton Grazing on Heterosigma akashiwo Using a Species- Specific Approach Combining Quantitative Real-Time PCR (QPCR) and Dilution Methods. Microbial Ecology, 2008, 55, 583-594.	2.8	34
30	Diversity and Distributional Patterns of Ciliates in Guaymas Basin Hydrothermal Vent Sediments. Journal of Eukaryotic Microbiology, 2013, 60, 433-447.	1.7	32
31	Growth, death, and photobiology of dinoflagellates (Dinophyceae) under bacterial-algicide control. Journal of Applied Phycology, 2014, 26, 2117-2127.	2.8	30
32	Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin. Plant Molecular Biology, 2011, 77, 565-575.	3.9	29
33	Molecular Approaches to the Investigation of Viable Dinoflagellate Cysts in Natural Sediments from Estuarine Environments1. Journal of Eukaryotic Microbiology, 2005, 52, 90-94.	1.7	27
34	<scp>SSU</scp> â€ <scp>rRNA</scp> Gene Sequencing Survey of Benthic Microbial Eukaryotes from Guaymas Basin Hydrothermal Vent. Journal of Eukaryotic Microbiology, 2019, 66, 637-653.	1.7	27
35	Use of Methacrylate De-embedding Protocols for In Situ Hybridization on Semithin Plastic Sections with Multiple Detection Strategies. Journal of Histochemistry and Cytochemistry, 1998, 46, 149-155.	2.5	25
36	Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates. Harmful Algae, 2017, 62, 127-135.	4.8	24

#	Article	IF	CITATIONS
37	Modified Serial Analysis of Gene Expression Method for Construction of Gene Expression Profiles of Microbial Eukaryotic Species. Applied and Environmental Microbiology, 2004, 70, 5298-5304.	3.1	23
38	Rapid Microbial Dynamics in Response to an Induced Wetting Event in Antarctic Dry Valley Soils. Frontiers in Microbiology, 2019, 10, 621.	3.5	22
39	The photobiology of <i>Heterosigma akashiwo</i> . Photoacclimation, diurnal periodicity, and its ability to rapidly exploit exposure to high light. Journal of Phycology, 2013, 49, 349-360.	2.3	20
40	The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology, 2020, 96, .	2.7	20
41	NITRATE REDUCTASE (NR1) SEQUENCE AND EXPRESSION IN THE HARMFUL ALGA HETEROSIGMA AKASHIWO (RAPHIDOPHYCEAE)1. Journal of Phycology, 2010, 46, 135-142.	2.3	19
42	Quantitative real-time PCR for detecting germination of Heterosigma akashiwo and Chattonella subsalsa cysts from Delaware's Inland Bays, USA. Aquatic Microbial Ecology, 2009, 55, 229-239.	1.8	19
43	In search of molecular dovetails in mussel byssus: from the threads to the stem. Journal of Experimental Biology, 2000, 203, 1425-31.	1.7	19
44	Effects of a bacterial algicide, IRI-160AA, on dinoflagellates and the microbial community in microcosm experiments. Harmful Algae, 2014, 39, 210-222.	4.8	17
45	Comparison of sandwich hybridization assay and quantitative PCR for the quantification of live and preserved cultures ofHeterosigma akashiwo(Raphidophyceae). Limnology and Oceanography: Methods, 2014, 12, 232-245.	2.0	16
46	Distribution of Pfiesteria piscicida cyst populations in sediments of the Delaware Inland Bays, USA. Harmful Algae, 2006, 5, 363-373.	4.8	15
47	Effects of growth phase, diel cycle and macronutrient stress on the quantification of Heterosigma akashiwo using qPCR and SHA. Harmful Algae, 2014, 37, 92-99.	4.8	15
48	Light intensity impacts the production of biofuel intermediates in Heterosigma akashiwo growing on simulated flue gas containing carbon dioxide and nitric oxide. Bioresource Technology, 2016, 219, 246-251.	9.6	14
49	Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates. Harmful Algae, 2020, 94, 101798.	4.8	14
50	Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata. Harmful Algae, 2014, 36, 63-70.	4.8	12
51	DESCRIPTION OF <i>VIRIDILOBUS MARINUS</i> (GEN. ET SP. NOV.), A NEW RAPHIDOPHYTE FROM DELAWARE'S INLAND BAYS. Journal of Phycology, 2012, 48, 1220-1231.	2.3	11
52	The Marine Microalga, Heterosigma akashiwo, Converts Industrial Waste Gases into Valuable Biomass. Frontiers in Energy Research, 2015, 3, .	2.3	9
53	Expression of novel nitrate reductase genes in the harmful alga, Chattonella subsalsa. Scientific Reports, 2018, 8, 13417.	3.3	8
54	Small Polar Molecules: A Challenge in Marine Chemical Ecology. Molecules, 2019, 24, 135.	3.8	7

#	Article	IF	CITATIONS
55	Functional trait thermal acclimation differs across three species of mid-Atlantic harmful algae. Harmful Algae, 2020, 94, 101804.	4.8	7
56	Interactive effects of light, CO2 and temperature on growth and resource partitioning by the mixotrophic dinoflagellate, Karlodinium veneficum. PLoS ONE, 2021, 16, e0259161.	2.5	7
57	Metabolomic Insights of the Effects of Bacterial Algicide IRI-160AA on Dinoflagellate Karlodinium veneficum. Metabolites, 2022, 12, 317.	2.9	6
58	Critical comparison of molecular methods for detection and enumeration of the harmful algal species, Heterosigma akashiwo, in environmental water samples. Journal of Applied Phycology, 2018, 30, 2425-2434.	2.8	5
59	Simulation and analysis of a model dinoflagellate predator-prey system. European Physical Journal: Special Topics, 2015, 224, 3257-3270.	2.6	4
60	Diversity of Diatom Communities in Delaware Tidal Wetland and Their Relationship to Water Quality. Frontiers in Environmental Science, 2018, 6 , .	3.3	4
61	Effects of a bacteria-produced algicide on non-target marine invertebrate species. Scientific Reports, 2021, 11, 583.	3.3	3
62	Characterization of Pfiesteria Ichthyocidal Activity. Applied and Environmental Microbiology, 2005, 71, 6463-6464.	3.1	2
63	Current applications and technological advances in quantitative real-time PCR (qPCR): a versatile tool for the study of phytoplankton ecology. , 2022, , 303-351.		2
64	Heterosigma akashiwo does not serve as prey and chloroplast donor for the toxic dinoflagellate, Dinophysis acuminata. Harmful Algae, 2022, 111, 102168.	4.8	0